

SUBMISSION OF THE AUSTRALIAN TRUCKING ASSOCIATION

19 December 2025

Introduction

1. The Australian Government has asked the Productivity Commission (PC) to provide advice on the impacts of a heavy vehicle productivity reform package, to support continued National Competition Policy reforms. This reform package aims to increase transport productivity for all heavy vehicles (generally all vehicles above 4.5 tonnes gross vehicle mass, for example trucks and buses) and support the uptake of heavy zero emission vehicles.
2. This submission constitutes an initial response to the PC's call for submissions. The Australian Trucking Association (ATA) can provide more detailed information on specific topics at later stages of the PC inquiry.

About the Australian Trucking Association

3. The Australian Trucking Association (ATA) is a national industry association. Like many national associations, it is established as a company limited by guarantee.
4. The ATA membership comprises 11 industry associations:
 - Australian Furniture Removers Association
 - Australian Livestock and Rural Transporters Association
 - National Road Transport Association
 - NT Road Transport Association
 - Queensland Trucking Association
 - Road Freight NSW
 - South Australian Road Transport Association
 - Tasmanian Transport Association
 - Transport Women Australia Limited
 - Victorian Transport Association
 - Western Roads Federation
5. The ATA also has 7 corporate members:
 - Australia Post
 - Camlin Transport and Rural Trading
 - DGL
 - John West Logistics PTY LTD
 - K&S Corporation Limited
 - Mainfreight
 - Multiquip
6. In addition, the ATA has 9 associate members representing suppliers of goods and services to the trucking industry. Together, we are a united voice on trucking issues of national importance. We represent the 60,000 businesses and 200,000 people who make up the Australian trucking industry.

7. The ATA's members span the full spectrum of the road freight contractual chain, including owner-drivers, small and medium fleet operators, large national carriers, freight customers, and suppliers.

Increasing heavy vehicle road access to reduce emissions and increase productivity

Heavy Vehicle National Law Reform

8. The Heavy Vehicle National Law (HVNL) and its regulations impose significant and unnecessary constraints on the use of electric and high productivity vehicles. The HVNL applies in every state except Western Australia and the NT.
9. Electric and hydrogen fuel cell electric vehicles are heavier than their diesel equivalents. This reduces the amount of freight they can carry – except on route networks that allow for higher mass. These route networks are limited and have inconsistent requirements. The rules for road network access remain inconsistent across state borders and restrict the use of high productivity freight vehicles, which are a key to increasing the industry's productivity and reducing its emissions for each tonne of freight moved.
10. The fundamental issue is that, while there is some consistency in the HVNL administered by the National Heavy Vehicle Regulator (NHVR), road access decisions remain the jurisdiction of individual road managers, including the 6 states and two territories, 537 local councils, utility owners and private land holders.
11. As ATA understands it, state authorities can if they choose, override road access decisions of local councils.
12. A better system would involve consistent guidelines for decision-making, perhaps determined and imposed at Ministerial level, and some type of administrative appeals mechanism with a state authority empowered to enforce reasonable and consistent decisions.
13. The ATA recommends that the PC assess the impact of the three general access reforms out of the HVNL review—
 - Increasing general mass limits (GML) to match the current concessional mass limits (CML)
 - Increasing general access vehicle length to 20 metres
 - Increasing general access height from 4.3 to 4.6 metres.
14. The first two reforms above were agreed and are being implemented. More needs to be done on the height increase.
15. On the face of it, each of these reforms has significant potential to improve productivity. For example, the increase in mass allowance from GML to CML will allow an additional 5 per cent payload on all movements, without the need for

permits or accreditation. Similarly, the increases in length and height can allow more freight per movement if not already mass constrained.

16. The ATA lodged a [submission](#) in response to the Queensland parliamentary inquiry into the HVNL amendment bill, recommending a HVNL work program to boost productivity.

Productivity and Decarbonisation

17. [The ATA lodged a submission](#) to the Productivity Commission in August 2025 in response to the PC's interim report into investing in cheaper, cleaner energy, and the net zero transformation. This submission recommends that the Government adopt:
 - a voucher program to encourage the take up of electrification and green hydrogen combustion options
 - a low carbon fuel standard to increase the availability and use of renewable diesel and green hydrogen in both fuel cell and combustion applications
 - a regtech solution, targeted infrastructure investment and road access upgrades to support the use of high productivity and low emission vehicles.This approach has now been endorsed as a National Competition Policy priority.

Vehicle Standards

18. Australia's ADR policy harmonises with UNECE regulations where possible and many ADRs explicitly accept equivalent UN regulations (and in some cases, US / Japanese standards) as alternative evidence. This practice reduces duplicated testing for imported vehicles already certified overseas. Australia has introduced ADR109/00 Electric powertrain safety and ADR110/00 Hydrogen fuelled vehicle safety which are harmonised with UNECE R100 and UNECE R134 respectively. These apply across heavy vehicle categories (NB, NC). If a BEV / FCEV truck already carries UNECE type approval it should be used to demonstrate compliance to Australian design rules. Certification enables first supply to market, ongoing operation requires alignment to the HVNL (network access, permits and notices).
19. For innovative heavy vehicles including ZEHVs with different mass distributions, PBS approvals could be considered to demonstrate dynamic performance (stability, braking, swept path) and secure entry to the Australian market and gain network access without repurposing.

National Automated Access System

National significance and productivity impact

20. The National Automated Access System (NAAS), based on the proven Heavy Vehicle Access Management System (HVAMS) model, represents one of the most significant productivity reforms available to the Australian economy. With an independently assessed Benefit Cost Ratio (BCR) of an astounding 30:1, NAAS has the potential to materially lift national freight productivity, reduce regulatory burden, improve investment certainty, and strengthen Australia's economic resilience. The NAAS is not simply a technology project. It is an enabling reform that underpins supply chain efficiency, infrastructure delivery, and the broader productivity agenda identified by the Productivity Commission.
21. The reform is foundational to enabling efficient, safe, and productive movement of freight, construction equipment and materials, and special-purpose vehicles across jurisdictions. Its successful delivery is critical to supporting Australia's pipeline of nationally significant projects, including large-scale renewable energy developments, Olympic infrastructure, and other major public and private investments. Without efficient, predictable, reliable, user determined, and nationally consistent heavy vehicle access arrangements, these projects will face unnecessary delay, cost escalation and risk.

Prolonged delay and erosion of confidence

22. The passages below illustrate the history of the NAAS:
23. *"All governments have committed to establishing a single seamless National Automated Access System for heavy vehicles by 2026. The NAAS will largely replace the current manual system (of applying for permits from each road manager for heavy vehicle road access) with a system that produces instant, tailored network access maps for each applicant. It will be based on the Tasmanian Heavy Vehicle Access Management System (HVAMS). It will make decision-making on access quick, easy and consistent across jurisdictions, and will promote interoperability through providing the safest possible access for high-productivity freight vehicles."* Review of the National Freight and Supply Chain Strategy, Review Report, May 2024, Department of Infrastructure, Transport, Regional Development, Communications and the Arts: <https://www.infrastructure.gov.au/sites/default/files/documents/National-Freight-and-Supply-Chain-Strategy-Review-Report.pdf>
24. *"The Steering Committee provides primary oversight of the delivery of the National Automated Access System (NAAS), taking over the role of the previous NAAS Oversight Committee. The revised remit of the Steering Committee is complemented by establishment of a dedicated Technical Advisory Group comprising representatives of all governments, independently chaired by a well-known road transport and heavy vehicle, expert, Michael Bushby. Governments have dedicated these new resources*

and expertise to the Technical Advisory Group to develop a detailed roadmap for development and implementation of the NAAS. The Steering Committee received an update from the Independent Chair of the NAAS-TAG, following the first face-to-face workshop of the Technical Advisory Group held in Melbourne 1 on 13 and 14 February. The workshop represented strong collaboration from governments in progressing the NAAS. Governments remain committed to improving productivity for the heavy vehicle sector, through automating access decision-making. The Steering Committee noted the need to continue engaging with industry to inform development of the NAAS.” Statement on the 17 February 2025 Meeting of The Heavy Vehicle National Law Reform Implementation Steering Committee: <https://www.infrastructure.gov.au/sites/default/files/documents/statement-on-the-17-february-2025-meeting-of-the-heavy-vehicle-national-law-reform-implementation-steering-committee-10-april-2025.pdf>

25. *“The National Automated Access System (NAAS) is intended to support road managers, including road authorities, local government and third parties, to make access decisions more efficiently, driving productivity and safety across state borders. Austroads has completed a review of the legal and regulatory issues, policy settings and information capture, and associated qualitative benefits of a national automated access system. The review's findings have been provided to Austroads members. The Heavy Vehicle National Law Reform Implementation Steering Committee is leading the work on NAAS.” Updated: 2 June 2025*
26. *“On October 17, 2025, the plan and budget for Phase 2 of the NAAS was approved by the Infrastructure and Transport Senior Officer's Committee, which has provided a solid foundation for the next three years of work. The Committee discussed governance arrangements for Phase 2 of the NAAS, agreeing the project would require its own Steering Committee to aid in the oversight of the rollout. NAAS Phase 1 continues with planned releases in Queensland and Tasmania, with hosting arrangements transferring from Tasmania to Queensland as the project moves into Phase 2.” Statement on 5 November 2025 – HVNL Steering Committee Meeting: <https://www.infrastructure.gov.au/department/media/publications/statement-5-november-2025-hvnl-steering-committee-meeting>*
27. Despite its widely understood significance, and establishment of the NAAS as a Commonwealth supported project, industry is concerned that although ITMM set the target of 50% permit reduction in three years and 95% in five years, three years in, the activity has not delivered against the goal of reduced permit applications (with 196,629 in 2024-25, 172,000 in 2023/24, 151,000 in 2022/23, and 143,000 in 2021/22). Even the initial, relatively narrow focus on ADF (Australian Defence Force) functionality has experienced delays.
28. This, combined with the lack of engagement with industry, has resulted in an erosion of confidence across industry and its clients; those who need to use the NAAS for benefits to the economy to materialise.

Lack of genuine stakeholder engagement

29. A central risk to delivery is the absence of genuine, ongoing engagement with industry. There is a sense of a significant shift from the HVAMS model, where industry and industry associations were regularly, proactively and meaningfully consulted and inherently engaged. In contrast, with the NAAS to date, engagement has largely been limited to information sharing or consultation after key decisions have been taken. This approach is insufficient for a reform whose benefits are entirely dependent on industry uptake and use.
30. Without industry embedded in the design and delivery process, there is no systematic or sustained mechanism to:
 - Identify operational pain points;
 - Test assumptions against real-world operating conditions;
 - Ensure functionality is sequenced to deliver early productivity gains;
 - Design user experience that supports adoption rather than deters it.
31. An absence of industry expertise at the core of the program significantly increases the risk that NAAS will be delivered in a form that does not meet industry expectations or needs.

Risk of failing to reduce permits and realise broader productivity benefits

32. Industry is particularly concerned that the program, as currently structured, may fail to deliver on its fundamental objective: increased access certainty and the meaningful reduction in the use of permits.
33. Without automated access to both state and local government road networks, industry will remain constrained at the very points where access failures most commonly occur. Failure to reduce reliance on permits will directly undermine the productivity, safety and investment benefits that underpin the 30:1 BCR.

The need for accountable leadership

34. Delivery of the NAAS requires strong, independent leadership with clear authority and accountability. Responsibility for outcomes must rest with a single, empowered Chair and Program Sponsor, supported by effective technical and advisory committees, which play a vital role in providing advice and specialist input but cannot substitute for leadership. The Chair/Program Sponsor needs industry expertise to understand operational priorities, implementation impacts, and the practical consequences of design and sequencing decisions. Without a clearly accountable Chair empowered to resolve issues across agencies and jurisdictions and informed by real-world industry experience the NAAS risks continued delay, fragmented decision-making, and a diffusion of responsibility.

Restore confidence and deliver outcomes

35. To realise the benefits identified for the NAAS and aligned with improved productivity:

- Reframe the NAAS as a priority national productivity reform, with funding, scope and timelines aligned to its 30:1 BCR.
- Embed genuine, ongoing industry collaboration across the full lifecycle of the program including representation on steering committees and technical advisory committees.
- Explicitly prioritise permit reduction and access certainty outcomes as the primary measures of success.
- Build on the decision to establish its own dedicated NAAS Steering Committee by ensuring a Chair is accountable for delivery against agreed outcomes.
- House the Program within a stable national institution capable of supporting delivery discipline and industry engagement, rather than operating through state departments with inherent procurement red tape and prioritisation risks.

Conclusion

36. If governments are serious about responding to the Productivity Commission's findings and recommendations, particularly around lifting Australia's practical productivity, reducing regulatory burden and enabling economic growth, then the NAAS must be treated as a priority reform, not a peripheral technology project. Serious intent must be matched with serious investment, clear scope, and an accelerated delivery pathway that is transparent and credible. At present, there is little clarity about what "accelerating the NAAS" would mean in practice. What additional funding would be being committed? How would that investment tangibly shorten timelines, expand capability, or de-risk delivery? What outcomes should industry reasonably expect to see — and by when?

37. The NAAS offers a once-in-a-generation opportunity to transform heavy vehicle access and lift national productivity. Delivering these benefits requires urgency, clarity and strong accountability. In the absence of decisive governance reform, genuine industry collaboration, and a clear commitment to automated access and permit reduction outcomes, the reform risks falling short of its economic potential, or even worse, it will fail slowly.

National Heavy Vehicle Driver Competency Framework

38. The Australian Trucking Association has significant concerns about—

- the extended delays in and uncertain timelines for the NHVDCF reform process
- the direction of the reforms, and
- the terms of reference of overseas heavy vehicle driver licensing project.

Extended delays in heavy vehicle driver licensing reform

39. Almost ten years after industry first called for change following a 2016 safety incident, there has been no practical reform to heavy vehicle driver licensing despite extensive policy development by Austroads and the NHVDCF process.
40. The ATA calls for Infrastructure and Transport Senior Officials' Committee to require clear, agreed and publicly available timelines for all elements of the reform program.

Direction of proposed Austroads licensing reforms

41. While Austroads is developing experience-based and supervised pathways, elements of the proposed approach risk creating workforce and progression barriers, particularly for drivers and employers in regional areas.
42. The ATA supports experience and supervision pathways but argues that the existing HR to MC licensing pathway should be retained to support workforce retention and practical progression.

Structure of the MC licence class

43. The current single MC licence class does not adequately reflect the increased skill required to operate longer and more complex vehicle combinations.
44. The ATA recommends splitting the MC licence class at 37 metres of vehicle length, with existing MC licence holders who have more than six months' experience automatically upgraded to the higher class.

Overseas heavy vehicle driver licensing

45. Current consideration of recognising overseas heavy vehicle driving credentials raises concerns about safety, consistency and equity across the workforce.
46. The ATA supports applying the same Australian licensing standards to all drivers, with overseas credentials above a car licence not recognised, and overseas drivers required to pass Australian assessments and build experience on Australian roads.

South Australia's MC Licence Program

47. South Australia has introduced a structured, competency-based MC Licence Program as an alternative to fixed time-based licence holding requirements and has ceased recognising overseas truck driving experience (except from New Zealand).
48. The ATA urges governments to adopt the South Australian MC Licence Program nationally as an interim measure to improve safety, ensure fairness, and provide a consistent, practical pathway to MC licensing across Australia.

Barriers to availability of EV truck charging infrastructure

49. Space – truck charging infrastructure will need to be on major freight routes, existing refuelling stops would need to be expanded to incorporate charging stations. There is a time constraint involved as charging is not instantaneous, so sufficient space needs to be allocated for a long heavy vehicle to sit idle for periods of up to several hours (battery capacity and charge rate dependant). If truck charging infrastructure could be introduced into overnight rest areas, there would be a mutual benefit – driver rest break and charging overnight for full recharge.
50. Local grid supply limits – EV truck batteries are significantly larger in capacity than their light vehicle counterparts. An EV truck recharging station with capacity for several heavy vehicles would require energy orders of magnitude larger than what would be required for light vehicles.
51. Under the ATA submission in response to the PC interim report, the ATA proposed that the Government should implement a low carbon fuel standard based on the California Air Resources Board (CARB) standard.
52. Under this model, fuel suppliers have an obligation to reduce the life cycle emissions intensity of the fuel they sell against declining benchmarks. They can meet their obligations through a range of certified pathways, including by selling renewable fuel and deploying EV fast charging sites or green hydrogen charging stations. Fuel suppliers are able to spread the cost of meeting the standards across their customer base.
53. In 2022, the Californian low carbon fuel standard helped replace nearly 7.5 gigalitres (2 billion gallons) of conventional diesel with cleaner alternatives.
54. The ATA proposes that an Australian version of the approach should—
 - allow suppliers to decide how to adjust their product mix to meet overall life cycle emissions intensity targets and the needs of their customers. Suppliers would not need to meet specific blending mandates, but businesses who wished to purchase a specific blend to meet their Safeguard Mechanism obligations or customer requirements would be able to do so
 - enable the cost of meeting the targets to be recovered from all fuel purchasers, and
 - allow suppliers to claim credits for rolling out fast EV chargers and green hydrogen refuelling.
55. The ATA's emissions modelling shows that replacing 5 per cent of Australia's diesel supply with renewable diesel would save 6.9 million tonnes of CO2-e from 2026-2050. Most of the savings would be from articulated trucks, highlighting how this measure would complement the voucher scheme that the ATA is proposing.

Curfews for EV trucks

56. The uptake of EV trucks has the potential to be able to mitigate traffic congestion and introduce a delivery around the clock methodology by utilising quiet delivery vehicles in noise sensitive areas and to those restricted by curfews.

Comparative noise levels

57. Electric Vehicle (EV) trucks produce significantly lower noise levels compared to traditional Internal Combustion Engine (ICE) trucks. Key differences include:

- Engine Noise: EVs lack combustion engines, eliminating engine rumble and exhaust sounds. Typical ICE trucks generate 70–90 dB under load, while EV trucks often operate at 55–65 dB.
- Idling and Acceleration: EVs are nearly silent when idling and maintain quieter acceleration due to electric drivetrains.
- Ancillary Noise: While tyre and aerodynamic noise remain, these are generally less intrusive than engine noise, especially at urban speeds.

Noise Reduction and night time travel impacts

58. Lower noise emissions from EV trucks can mitigate several negative impacts associated with night-time freight movement:

- Community well-being: Reduced noise pollution decreases sleep disturbances and stress for residents near transport routes.
- Regulatory compliance: Quieter operations help meet urban noise ordinances and improve public acceptance of night-time deliveries.
- Operational efficiency: With fewer complaints and restrictions, logistics providers can optimize routes and schedules, reducing congestion during peak hours.

Considerations for curfews

59. While noise reduction from EV trucks supports extended operating hours, curfew policies still require careful planning:

- Policy review: Existing curfews designed for ICE trucks may need revision to allow EV exemptions or partial relaxation.
- Monitoring and enforcement: Authorities must define acceptable noise thresholds and implement compliance checks. Caution will need to be used to ensure any additional noise contributors such as reversing alarms, plant equipment, unloading activities have been addressed. Additionally some of these contributors are mandated by law or work place regulations (ADR108/00 – reversing alarms).
- Stakeholder engagement: Collaboration with local councils, residents, and freight operators ensures balanced outcomes.
- Infrastructure readiness: Adequate charging facilities and route planning are essential for EV adoption in night-time operations.

Safety concerns for EV trucks operating at night

- While EV trucks offer noise benefits, their quiet operation introduces unique safety challenges:
 - Pedestrian and Cyclist Awareness: Reduced auditory cues may increase collision risk for pedestrians and cyclists who rely on engine noise for detection.
 - Vehicle Detection: Other road users may not perceive EV trucks approaching, especially in poorly lit areas.

Mitigation measures

- Acoustic Vehicle Alerting Systems (AVAS): ADR113/00 will implement artificial sound generators at low speeds to enhance detectability.
- Enhanced Lighting: Use high-visibility LED lighting and reflective markings for better night-time visibility.
- Side underrun protection: While SURP (ADR106/00) is mandatory for NB2 and NC vehicles where the width is greater than 2.5m SURP should be implemented on all EV heavy vehicles utilised for night time (curfew exempt) activities.
- Driver Training: Educate drivers on heightened vigilance in urban and residential zones.
- Technology Integration: Deploy sensors and collision avoidance systems to compensate for reduced auditory presence.

Quantifying the effects of reform to curfews for EV trucks.

60. Quantifying the effects of reforming night-time curfews by introducing EV trucks involves a mix of noise, operational, economic, and social impact metrics.

- Baseline vs. Post-Reform Noise Levels: Use decibel readings along freight corridors before and after EV deployment.
- Sleep Disturbance Index: Apply WHO or local health guidelines to estimate reductions in community sleep disruption.
- Delivery Window Expansion: Calculate additional freight moved during curfew hours.
- Traffic Congestion Reduction: Model peak-hour traffic improvements due to night-time freight shifts.
- Cost Savings for Operators: Compare fuel/energy costs and time savings from reduced congestion.
- Consumer Price Impact: Estimate downstream benefits from improved logistics efficiency.
- Emission Reduction: Quantify CO₂ and NOx reductions from EV adoption during night operations.
- Community Surveys: Measure perceived improvement in quality of life and acceptance of night-time freight.
- Noise monitoring stations, telematics data, NHVR permit records, and energy consumption logs.

- Use predictive modelling techniques (e.g., traffic simulation and noise propagation) for future scenarios.