

Productivity Commission's study into the impacts of heavy vehicle reform

Victorian Government submission

The Secretary
Department of Treasury and Finance
1 Treasury Place
Melbourne Victoria 3002
Australia
Telephone: +61 3 9651 5111
dtf.vic.gov.au

Authorised by the Victorian Government
1 Treasury Place, Melbourne, 3002
Printed by XXXXXXXXXXXX
Printers address XXXXXXXXXXXX
Printed on recycled paper.

© State of Victoria 2026

You are free to re-use this work under a [Creative Commons Attribution 4.0 licence](#), provided you credit the State of Victoria (Department of Treasury and Finance) as author, indicate if changes were made and comply with the other licence terms. The licence does not apply to any branding, including Government logos.

If you have copyright queries or would like to receive this publication in an accessible format email information@dtf.vic.gov.au

This document is available in Word and PDF format at dtf.vic.gov.au

Contents

1. Executive Summary	1
2. Background	2
3. Increasing heavy vehicle road access to reduce emissions and increase productivity	3
3.1 Information Request 1	3
3.2 Background	3
3.3 Appropriate reforms (e.g. increases in general mass limits)	4
3.4 Barriers and additional cost of road wear and infrastructure maintenance	5
3.5 Implementation issues and apportioning costs between governments	5
3.6 Imported vehicles and compliance with international and domestic standards	6
3.7 Availability of road use and network data	6
4. National Automated Access System	8
4.1 Information request 2	8
4.2 Background	8
4.3 Future coordination and alignment between the states and territories	9
4.4 How best to determine which roads might be eligible for automatic access, initially and on an ongoing basis	9
4.5 The technical and administrative practicalities of scaling up Tasmania's model to the whole of Australia	9
4.6 The costs and benefits of the current access permit system borne by heavy vehicle operators	10
4.7 Availability of data on road use, the structure of the road network, and different heavy vehicle users (and user industries)	10
5. National Heavy Vehicle Driver Competency Framework	11
5.1 Information request 3	11
5.2 Background	11
5.3 What are the largest hurdles for timely or accelerated implementation of these reforms?	12
5.4 What federal, state and territory or private bodies are expected to handle the various stages and aspects of implementation?	13
5.5 What timeframes are sensible for accelerated implementation of the reforms?	14
5.6 Data relevant to quantitative estimates of productivity impacts of the reforms? How best to quantify the impact of the reforms?	14
6. Barriers to availability of EV truck charging infrastructure	15
6.1 Information request 4	15
6.2 Background	15
6.3 Regulatory and other practical barriers to the rollout of charging infrastructure for battery heavy powered EV trucks	15

6.4	Policy issues affecting the long-term implementation of an effective network of publicly accessible EV truck charging infrastructure	16
7.	Curfews for EV trucks	17
7.1	Information request 5	17
7.2	Comparative noise levels of electric heavy vehicles and internal combustion engine heavy vehicles	17
7.3	How significantly any noise reduction ameliorates the negative impacts of night-time travel	17
7.4	Implementation considerations, given different levels of government have responsibility for the implementation of curfews, particularly local governments in residential areas	17

1. Executive Summary

The Victorian Government welcomes the opportunity to provide a submission to the Productivity Commission's study (the Study) into the impacts of heavy vehicle reform in response to its call for submissions.

The freight and logistics sector is estimated to contribute at least \$36 billion (approximately 6 per cent) to Victoria's Gross State Product and employs around 240,000 full-time equivalent positions across Victoria¹. Nationally, an increase in logistics total factor productivity of 1 per cent is estimated to increase GDP by \$2 billion².

Greater uptake of High Productivity Freight Vehicles (HPFVs) and Low and Zero Emissions Heavy Vehicles (LZEHVs) are central to helping Victoria meet the challenge of increasing freight volumes and reducing its carbon emissions.

This submission responds to the Productivity Commission's call for submission as follows:

- Section 3 considers potential additional maintenance costs and the need for asset upgrades when allowing vehicles with higher axle mass on to Victorian roads,
- Section 4 considers the benefits of a National Automated Access System, and Victoria's experience with its own Heavy Vehicle Structural Assessment Permit System
- Section 5 outlines considerations for the accelerated implementation of the National Heavy Vehicle Driver Competency Framework
- Section 6 discusses the barriers to availability of EV truck charging infrastructure
- Section 7 provides discussion on curfews for LZEHVs in Victoria

Through the Study, Victoria encourages the Productivity Commission to develop advice on the impacts of the heavy vehicle productivity reform package that will:

- clearly outline the expected ongoing costs to states and territories of these reforms, in particular, what the impact of increasing heavy vehicle road access is likely to be on state and territory road and infrastructure maintenance costs
- examine how these expected ongoing costs are likely to change over time with the increased uptake of LZEHVs and HPFVs, and
- consider related policies and programs announced in 2025 across Australia, including:
 - The National Freight and Supply Chain Strategy and the supporting National Action Plan agreed to at the Infrastructure and Transport Ministers' Meeting
 - Joint statement from Treasurers on road user charging, and
 - Aligned state and territory freight policy documents, including Victoria Delivers: The Victorian Freight Plan 2025-30.

¹ *The Victorian Freight Plan 2025-30: Victoria Delivers*, Department of Transport and Planning, accessed at <https://www.vic.gov.au/sites/default/files/2025-09/The-Victorian-Freight-Plan-2025-29-Victoria-Delivers.pdf>

² *Moving more with Less 2021: High Productivity Freight Plan*, Department of Transport and Planning, accessed at <https://www.vic.gov.au/sites/default/files/2023-09/Moving-More-With-Less.pdf>

2. Background

The Victorian Government foresees a future where the HPFV network allows for end-to-end access through integrated interstate, state and local road connections. The uptake of larger vehicles that can carry more freight is essential in ensuring that the capacity of Victoria's road network expands without exponentially increasing the number of heavy vehicles on Victorian roads. HPFVs will help address the ever-growing freight task while minimising road use and environmental impact and mitigating the impact of a shortage of heavy vehicle drivers.

Ongoing productivity improvements and the adoption of pre-approved network routes and reference vehicle designs have paved the way for the next generation of newer, cleaner, safer, and more productive vehicles to be introduced to key freight corridors. Since the introduction of the first HPFVs, Victoria has expanded the HPFV network to cover more than 40 per cent of the arterial road network, maximising the extent of the network that HPFVs can operate safely and without needing a permit. In 2015, there were 17 HPFVs operating on Victorian roads. By 2025, this number had increased to more than 5,200. Each new HPFV performs the freight task in a more energy efficient, environmentally friendly and safe manner, as well as boosting Victoria's economy by lowering transport costs.

The Victorian Government has set ambitious emissions reduction targets, with an objective of net-zero carbon emissions by 2045. Currently, 25 per cent of emissions stem from the transport and logistics sector: road freight transport emissions alone account for roughly a third of these transport emissions – equating to around 8 per cent of Victoria's overall emissions³. HPFVs reduce emissions for the transportation of goods because they use newer, cleaner prime movers while last-mile vehicle segments can move to LZEHVs.

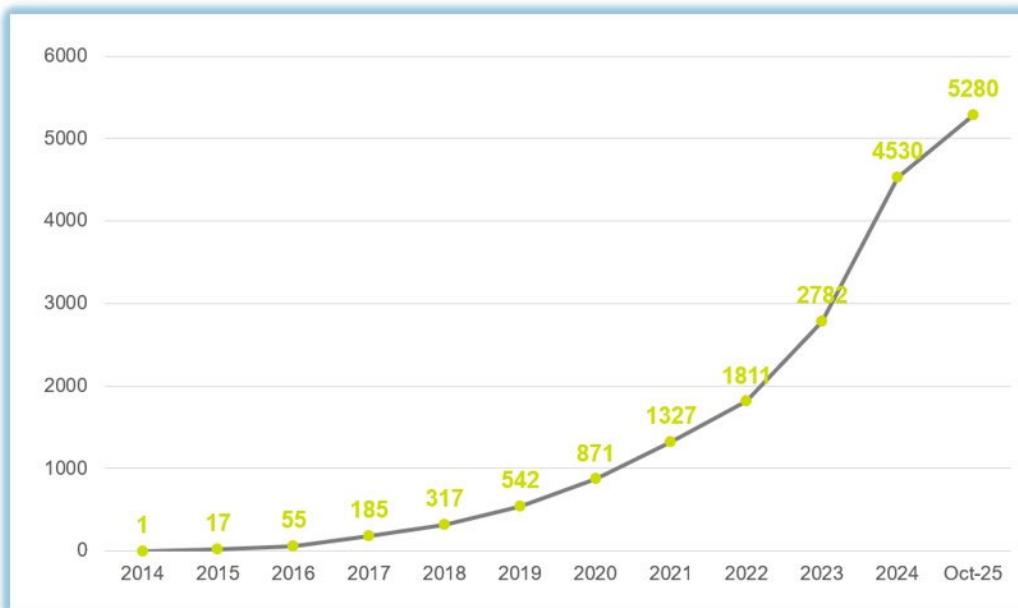
The Victorian Government acknowledges the potential of LZEHVs to help decarbonise the freight sector, while generating other benefits such as reduced air and noise pollution, spurring further industry innovation and potentially helping reduce operating costs in the longer term. It also acknowledges some of the current challenges to their greater adoption, including their current limited availability, high upfront cost, access, or payload limitations due to the greater mass of vehicle batteries and a lack of existing charging infrastructure suitable for LZEHVs. These have resulted in delays to more definitive action in reducing emissions associated with freight transport operations.

Facilitating the increased uptake and long-term viability of these vehicles will be a continued focus of the Victorian Government, and work is underway to address these barriers. Understanding the potential costs of these reforms to states and territories, in addition to ongoing road maintenance obligations, will be an important input to decision making.

³ *The Victorian Freight Plan 2025-30: Victoria Delivers*, Department of Transport and Planning, accessed at <https://www.vic.gov.au/sites/default/files/2025-09/The-Victorian-Freight-Plan-2025-29-Victoria-Delivers.pdf>

3. Increasing heavy vehicle road access to reduce emissions and increase productivity

3.1 Information Request 1


The PC seeks views, data and evidence that would be necessary to analyse and model these regulatory reforms, including:

- appropriate reforms to assess under this proposal, e.g. increases in general mass limits under the HVNL
- additional cost of road wear and infrastructure maintenance
- intersection with other infrastructure barriers necessary to take up reformed regulation
- implementation issues, including how governments should apportion any increased road infrastructure costs between levels of government
- how imported vehicles can comply with both international and domestic standards to allow vehicles (including heavy zero emission vehicles) to be imported without being repurposed
- availability of data on road use, the structure of the road network, and different heavy vehicle users (and user industries).

3.2 Background

Victoria has led the way in supporting increased heavy vehicle access and improving freight productivity. Over the past decade, Victoria has grown the High Productivity Freight Vehicle (HPFV) fleet from less than 20 to more than 5,200 vehicles operating on the network (**Chart 1**). This has been achieved without additional Commonwealth funding to offset the increased maintenance burden. This demonstrates Victoria's long-standing productivity-first approach and commitment to enabling industry to use safer, cleaner and more efficient vehicles.

Chart 1: increase in the High Productivity Freight Vehicle (HPFV) fleet in Victoria

As an example, in the late 1990s, Victoria became the first eastern seaboard state to approve B-Double access on more than 90 per cent of arterial roads. This led to a decade long upgrade of Victoria's bridge infrastructure that was funded by the State. This policy position of prioritising productivity has enabled industry to innovate, invest and transition to higher-performing vehicles, culminating in the objectives set out in Victoria's *Moving More with Less 2021: High Productivity Freight Plan* and *The Victorian Freight Plan 2025-30: Victoria Delivers*.

The move towards HPFV vehicles and future uptake of LZEHVs aligns with Victoria's climate action agenda. In many cases there is a synergy between productivity and emissions reduction in heavy vehicles. For example, route optimisation and improved logistics planning can reduce empty running and increase freight throughput, reducing both emissions and operating costs. Technologies that enhance vehicle efficiency such as improved aerodynamics, hybridisation or e-trailers, or switching to battery electric vehicles can also reduce running costs and improve predictability in operating costs.

Increased freight productivity benefits not only Victoria's freight and logistics sector but creates opportunities for Victorian primary producers and businesses that rely on road freight to get their products to market. This comes at an increased cost to maintaining the road network and improving our roads and structures to accommodate these heavier and more productive vehicles. The government has undertaken many separate streams of work to identify and address these needs, working closely with industry to roll out critical systems for vehicle assessments, freight tracking and to prioritise maintenance and upgrades to roads and bridges.

This Productivity Commission study presents an opportunity to highlight the far-reaching impacts of these productivity improvements, while also acknowledging the impact on state budgets and the need for appropriate incentive payments through the revitalised National Competition Policy.

3.3 Appropriate reforms (e.g. increases in general mass limits)

Victoria is the first state to roll out smart On-Board Mass (OBM) technology across the HPFV fleet. This provides accurate data on loading, compliance and productivity benefits over time, and will provide an evidence-base for further productivity improvements.

Further increases to general mass limits under the Heavy Vehicle National Law (HVNL) would allow greater productivity to be unlocked. However, any further mass increases must consider both the existing Victorian policy landscape and the need for increased maintenance spending, stronger road pavements, and upgrades to bridges and other road structures (discussed below).

Increasing the uptake of HPFVs and LZEHVs requires industry having greater certainty around access. Improving the approval process for Performance Based Standards (PBS) has been suggested as a way for some jurisdictions to increase the uptake. While Victoria has long supported streamlining the PBS approvals process, it should be noted that the main impediment to uptake is the industry's uncertainty that a PBS-approved combination will be approved to operate on a state's road network. With Victoria's introduction of the Heavy Vehicle Structural Assessment Permit System (HVSAPS)—described in more detail in **Section 4** below—it has provided the freight industry with the platform to innovate. Transport companies and trailer manufacturers can submit an innovative design and check whether it's safe to operate over the State's bridge infrastructure at no cost, before they build the vehicle. This certainty of access—more than streamlining the PBS rules—will encourage uptake.

3.4 Barriers and additional cost of road wear and infrastructure maintenance

Improving access for heavier and more productive vehicles will increase wear and tear on road pavements and assets such as bridges and culverts. Effective access reforms will need to be supported by focusing on the roads and bridges most essential for key freight routes and ensuring those structures are safe and adequately maintained for the vehicles that will use them today and into the future. This will impose additional costs on Victoria.

While many elements of the road network will require additional spending, bridge upgrades are key to unlocking productivity while ensuring the safety of road users, due to the higher potential for catastrophic failure compared to other road assets.

This is why Victoria is prioritising a bridge scoping and development program known as “Stronger Bridges Build a Better Freight Network”. This program has identified assets across key freight routes that require strengthening, replacement or reassessment to safely accommodate heavier vehicles, including future proofing infrastructure for LZEHVs with higher tare weights and axle masses.

State and federal funding is being allocated to identify and upgrade the bridges that would deliver the greatest productivity benefits. Work is ongoing to scope the cost of upgrades to the first tranche of bridges. This first tranche of work is in the process of receiving funding allocations and will open significant productivity opportunities for the state.

Regardless of regulatory changes, physical constraints remain across Victoria’s road network. Many bridges on secondary freight routes have restricted load capacities and require strengthening, replacement or further assessment before they can safely accommodate heavier vehicles.

A separate set of structures will require upgrades to support decarbonisation and encourage LZEHV uptake. This is a larger task because it affects more roads and structures than the core freight network. Across Victoria there are approximately 3000 bridges and approximately 6000 road carrying structures, a significant proportion of which were built before 1950. As bridge assets near end-of-life, the safety of the road network may see the introduction of stricter load limits that exclude heavier vehicles like HPFVs and LZEHVs.

Austroads has commissioned independent research that measures the additional road maintenance cost of decarbonisation, and specifically the additional maintenance costs imposed by heavier LZEHVs. While this work is still in draft stage, early findings show Victoria will face a significant and ongoing increase to road maintenance costs to provide a network suitable for new and cleaner vehicle technologies (Austroads may be able to provide further context and methodology). This cost is in addition to addressing any road maintenance backlog or additional costs arising from previous access improvements and strong uptake of HPFVs (**Chart 1**). Therefore, while desirable, greater LZEHV uptake will create permanent and compounding cost pressures due to greater vehicle masses.

3.5 Implementation issues and apportioning costs between governments

Previous Productivity Commission research has shown that the benefits of improved road productivity accrue substantively to the private sector and the Commonwealth Government, whereas the cost of

additional road maintenance and upgrades is a state responsibility.⁴ Increases in freight productivity generate substantial improvements in national economic output, with an associated growth in Commonwealth taxation revenue through company tax, income tax and GST collections. Lower freight costs also translate into reduced prices across national supply chains, delivering broad economic benefits to industry and consumers across Australia rather than to Victoria alone.

The infrastructure required to support higher mass limits is predominantly owned and maintained by state and local governments. Increased heavy vehicle loading directly accelerates pavement deterioration, shortens asset lifecycles and necessitates earlier and more extensive bridge and culvert strengthening or replacement. These increased obligations are not accompanied by an automatic commensurate increase in state revenue, particularly as existing road-related revenue sources – such as fuel excise – flow primarily to the Commonwealth and are declining with the uptake of LZEHVs.

To make reforms such as these beneficial to states and avoid disadvantaging other road users, heavy vehicle operators need to pay their fair share of road costs. Commonwealth road revenues, such as revenues from fuel excise and heavy vehicle road user charges, should be appropriately allocated to the ongoing needs of the road network. Lack of appropriate cost recovery mechanisms will hinder the implementation of this reform program.

Victoria's experience shows that state-funded access improvements alone are not sustainable. Clear co-funding arrangements between the Commonwealth, states and road managers will be required if national reforms introduce higher mass limits or support wider LZEHV adoption.

3.6 Imported vehicles and compliance with international and domestic standards

Victoria's Heavy Vehicle Structural Assessment Permit System (HVSAPS, discussed in further detail below) is designed to support innovation by enabling assessments for both existing and future vehicle types, including LZEHVs. Importantly, HVSAPS allows manufacturers or operators to assess prospective vehicles, including international models, at no cost to industry. This helps operators determine whether vehicles can meet domestic standards without needing to be repurposed post-import, reducing barriers to early LZEHV uptake.

3.7 Availability of road use and network data

Victoria's use of smart On-Board Mass and Telematics systems, HPFV monitoring, and network assessment tools provides a strong evidence base for understanding productivity, road wear and user behaviour. Similar smart systems could be rolled out to other jurisdictions to provide better data for decision-making in the future.

Victoria operates a legislated, protected Principal Freight Network, which works in unison with the National Land Transport Network to safeguard critical freight corridors. The existence of this freight network gives planners and regulators a clear view of high-value freight routes and the structural characteristics that matter most for future access reforms. However, improved national data sharing is required – particularly on road conditions, bridge load capacity, freight task distribution, and the

⁴ Productivity Commission 2024, National Competition Policy: modelling proposed reforms, page 79, retrieved at <https://assets.pc.gov.au/2025-10/competition-analysis-study-report-plus.pdf?VersionId=DKgl682okID8rp9LJVaCmmpALAPFmqQf>

characteristics of different user groups and industries – to support consistent regulatory reforms and transparent cost-sharing arrangements across jurisdictions.

4. National Automated Access System

4.1 Information request 2

The PC seeks views, data and evidence in relation to this proposal, including:

- future coordination and alignment between the states and territories
- how best to determine which roads might be eligible for automatic access, initially and on an ongoing basis
- the technical and administrative practicalities of scaling up Tasmania's model to the whole of Australia
- the costs and benefits of the current access permit system borne by heavy vehicle operators
- availability of data on road use, the structure of the road network, and different heavy vehicle users (and user industries)

4.2 Background

Victoria has supported the development and rollout of the National Automated Assessment System (NAAS) since it was introduced at the Infrastructure and Transport Ministers Meeting (ITMM) in 2022. The State has contributed funding to both Phase 1 and Phase 2 of the project.

With NAAS still several years away from full deployment, Victoria's DTP has built the Heavy Vehicle Structural Assessment Permit System (HVSAPS), to be rolled out to industry in the second week of January 2026. The need to develop HVSAPS dates to 2021 and a 400 per cent increase in Class 1 and Class 2⁵ permit applications requiring a bridge assessment. This increase was driven by the Victorian Government's Big Build and renewable energy agenda, as well as a decade of opening the road network to HPFVs (see **Chart 1**).

A significant backlog developed as a consequence of this increased demand for structural assessments, which was partially mitigated by the publication of over 70 maps on the National Heavy Vehicle Regulator's (NHVR) "National Network Maps". These pre-approved routes for mobile cranes, platforms, low loaders and HPFVs removed the need for some of these vehicles to be structurally assessed. However, given the industry's continuous innovation, there remained an ongoing need for an automated structural assessment system.

HVSAPS, when launched in January 2026, will fulfill this need and eliminate both the current permit backlog and DTP's fee-for service arrangement. The system has been built to improve upon the manual assessment process, meaning in some instances operators will enjoy greater approved mass limits than would be allowed under current assessments procedures. HVSAPS can integrate with NAAS and has been recognised by the Commonwealth and the Infrastructure and Transport Senior Officials Committee (ITSOC) as a future NAAS module.

⁵ As per the Heavy Vehicle National Law, Class 1 vehicles are large mobile cranes, low loaders and platform trailers. Class 2 vehicles are larger freight combinations like A-Doubles and B-Triples.

4.3 Future coordination and alignment between the states and territories

The success of the NAAS will depend on coordination and alignment between jurisdictions. Given this, Victoria has been transparent about its development of HVSAPS and how it has been designed to interface directly with the NAAS front-end. DTP intends to integrate HVSAPS with NAAS toward the end of 2026. In the meantime, HVSAPS will be interoperable with the NHVR portal.

While the structural assessments performed by HVSAPS are the most complicated part of any route check, geometric assessments (e.g. whether a vehicle can safely get around an intersection) and rail level crossing assessments (e.g., whether a heavy vehicle can safely travel over a level crossing) are also critical. Victoria will seek to leverage the future work of NAAS rather than develop these systems independently.

4.4 How best to determine which roads might be eligible for automatic access, initially and on an ongoing basis

HVSAPS can currently assess 6,000 structures for Class 1 and Class 2 combinations. An assessment can take between 20 minutes to an hour, depending on the number of bridges and the complexity of the vehicle. The key to HVSAPS is structural data and ensuring it is constantly kept up to date.

DTP is seeking to expand HVSAPS to roads managed by third parties, such as private tollways, forestry roads and local government road networks to provide a comprehensive automated bridge assessment service. However, full automation that encompasses the entire Victorian road network would require several years and additional funding. While the Commonwealth has provided assistance through the Strategic Local Government Asset Assessment Project (SLGAAP), which collects bridge data on behalf of Local Government Authorities (LGAs) that can then be used by the NAAS, integration of LGA road data will require additional funding beyond what is currently provided through SLGAAP. Additionally, while SLGAAP⁶ has been beneficial, it does not address the ongoing need for under-resourced LGAs to keep their bridge data up to date.

4.5 The technical and administrative practicalities of scaling up Tasmania's model to the whole of Australia

Victoria acknowledges the technical accomplishment of Tasmania's Heavy Vehicle Assessment Management System (HVAMS), which now forms the backbone of NAAS. Victoria also notes that Transport Main Roads in Queensland has adopted HVAMS to automate class oversize vehicles (due for release in 2026). However, earlier iterations of HVAMS—which focused on cranes and oversize vehicles and used a “vehicle matching” methodology—did not meet Victoria's requirements, hence the development of HVSAPS which Victoria will seek to integrate into the NAAS architecture.

Victoria also notes that Tasmania's experience with local government and incorporation of LGA data, will not be easily replicable in larger jurisdictions. In early HVAMS releases for large mobile cranes, Tasmania was able to bring all 29 LGAs on board. However, larger jurisdictions such as Victoria with 79 LGAs, New South Wales with 128 LGAs and Queensland with 77 LGAs would likely require significant additional time and resourcing to secure the participation of all LGAs.

⁶SLGAAP, at least in Victoria, only collects structural data, not geometric data.

4.6 The costs and benefits of the current access permit system borne by heavy vehicle operators

The current access system is costly to industry and resource intensive on road managers:

1. The National Heavy Vehicle Law sets a 28-day limit for a permit to be issued.
2. The permit system stifles innovation and productivity. Operators will either stick to older vehicle combinations such as rigid and semi-trailer or otherwise submit applications with a high probability of approval, rather than go through the full assessment process.
3. While the Performance Based Standards assessment process has allowed for innovation and led to a safer class of heavy vehicle on Australian roads, the complexity of the scheme means that a single permit application can have 500 combination variants, with road managers expected to assess each variant individually.

Given the above, an automated system is essential to support innovation and productivity growth in the road freight sector. However, adequate funding is required to achieve the promise of NAAS that would allow for real-time, automated road access decision-making through up-to-date data.

4.7 Availability of data on road use, the structure of the road network, and different heavy vehicle users (and user industries)

DTP requires regulated telematics and smart On-Board Mass (OBM) systems on HPFVs. These vehicle combinations, unlike smaller vehicles such as semi-trailers and B-Doubles, which have pre-defined, well-established networks, will achieve the greatest benefit from a NAAS.

When HVSAPS is launched in January 2026 telematics and OBM systems will provide data to indicate whether there's a broader uptake of HPFV combinations, due to the elimination of costs and delays associated with the current system in Victoria. HVSAPS will also produce data on which structures cause the greatest issues for industry, in terms of their structural capacity. This data will form part of the work DTP is undertaking to upgrade key structures on the network (see **Section 3**).

5. National Heavy Vehicle Driver Competency Framework

5.1 Information request 3

The PC seeks views, data and evidence in relation to this proposal, including:

- what are the largest hurdles for timely or accelerated implementation of these reforms
- what federal, state & territory or private bodies are expected to handle the various stages and aspects of implementation
- what timeframes are sensible for accelerated implementation of the reforms
- data relevant to quantitative estimates of productivity impacts of the reforms
- how best to quantify the impact of the reforms.

5.2 Background

Heavy vehicles, while comprising less than 4 per cent of Victorian traffic, account for 15 per cent of road fatalities^{7 8}. With Victoria's road freight task projected to grow 75 per cent by 2040⁹ with an increased demand for more than 21,000 additional drivers by 2034¹⁰, it is essential to protect all road users by ensuring that heavy vehicle drivers are safe and competent.

The proposed reforms implement nationally agreed enhancements to the National Heavy Vehicle Driver Competency Framework (NHVDCF), agreed-in-principle at the Infrastructure Transport Ministers' Meeting (ITTM) in December 2023. A national Decision Regulatory Impact Statement¹¹ (D-RIS) presented two complementary reform options:

1. **Option 1:** Competency Refresh, including introduction of enhanced and expanded competencies, online delivery of knowledge-based elements, establishing minimum training periods of training and assessment, and two new progressive licencing pathways.
2. **Option 2:** Eligibility Criteria, focused on preventing inexperienced drivers and individuals from obtaining or upgrading a licence through the introduction of two new licence eligibility criteria:
 - a. Requiring an open licence before a driver is eligible for a Medium Rigid or above licence.

⁷ Bureau of Infrastructure and Transport Research Economics (2025). Quarterly heavy vehicle road deaths. Accessed on 12 August 2025 from <https://datahub.roadsafety.gov.au/safe-systems/safe-vehicles/quarterly-heavy-vehicle-road-deaths#anchor-key-figures-for-march-2025>

⁸ Transport Accident Commission (2025). Lives Lost – Annual. Accessed on 12 August 2025 from <https://www.tac.vic.gov.au/road-safety/statistics/lives-lost-annual>

⁹ Bureau of Infrastructure and Transport Research Economics (2022). Australia interstate, intrastate and capital city road freight forecasts – 2022 update. Accessed on 4 September 2025 from https://www.bitre.gov.au/sites/default/files/documents/bitre_rr155.pdf

¹⁰ Victorian Government (2025). Heavy vehicle driver skills project. Accessed on 12 August 2025 from <https://www.vic.gov.au/heavy-vehicle-driver-skills-project>

¹¹ *Decision Regulatory Impact Statement – National Heavy Vehicle Driver Competency Framework*, Frontier Economics 2023, accessed at https://austroads.gov.au/__data/assets/pdf_file/0032/616964/NHVDCF_Decision_RIS.pdf

- b. Excluding drivers with a licence suspension or disqualification within the past two years from gaining or upgrading a heavy vehicle licence.

Following Austroads' review, transport ministers provided in-principle endorsement of Options 1 and 2b in December 2023 based on the D-RIS. The proposed reforms aim to address three interconnected problems that undermine the effectiveness of the current NHVDCF, namely:

- **Heavy vehicle licensing is not sufficiently focused on key risks.** The current NHVDCF was developed over a decade ago and lacks heavy vehicle-specific hazard perception training, attitudinal instruction on fatigue and speeding, and essential skills like advanced manoeuvring. Current eligibility criteria largely ignore driving history, despite research showing that drivers with recent licence bans have crash rates 50 per cent to 157 per cent higher than those of other drivers.¹² Moreover, licence progression based solely on tenure fails to ensure drivers have gained meaningful behind-the-wheel experience.
- **Arrangements governing heavy vehicle training and assessment are affecting the quality of driver licensing standards.** The NHVDCF currently does not specify minimum training or assessment durations, nor does it prescribe standardised, detailed content for each competency. Accredited training providers are currently required to develop their own materials and, facing commercial pressures to reduce costs, may shorten training and assessment in courses. A Victorian comparison of course durations shows differences in coverage: a course aimed at licence attainment lasts 40–60 hours, while a certificate-level course in driver operations intended to equip a person for a job in the transport sector can last more than 400 hours. The availability of testing-only options also allows applicants to bypass training entirely. Evidence suggests these issues also affect training in other jurisdictions¹³, making it difficult for any single jurisdiction to address these issues in isolation (see below).
- **Heavy vehicle driver competency standards are inconsistently applied across jurisdictions.** There is a lack of consistency across jurisdictions regarding heavy vehicle licensing, including among those that have adopted the NHVDCF. Variations in eligibility requirements, training standards and assessment methods complicate interstate operations and create opportunities for “licence shopping” in jurisdictions with less stringent requirements.

5.3 What are the largest hurdles for timely or accelerated implementation of these reforms?

Resourcing for further policy work and implementation. Although in-principle agreement to adopt the revised NHVDCF as described in the national decision regulatory impact statement was reached at the Infrastructure and Transport Ministers Meeting in December 2023, Austroads and jurisdictions must undertake significant efforts to revise core elements of the NHVDCF and implement the reforms. This program of work includes, but is not limited to:

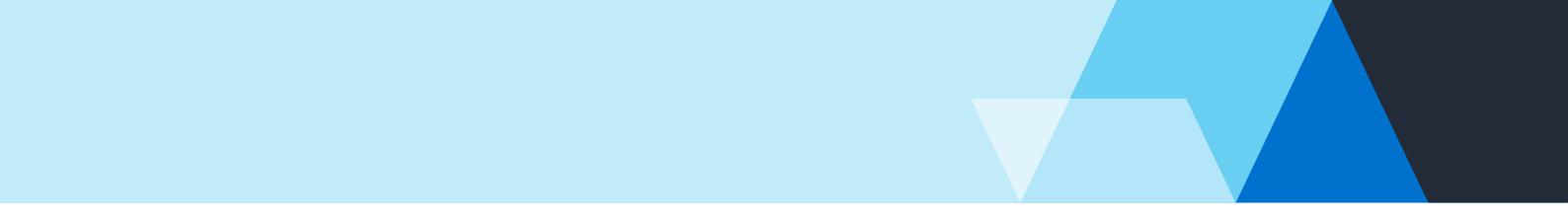
- Developing a nationally agreed baseline policy and standards as well as new products and services, such as an online Learning Management System, digital content and curriculums, and establishing prescriptive, detailed training and assessment requirements.

¹² MUARC (2023). Baseline Research Program: Heavy Vehicle Licensing, and Crash Risk. Stage 1A: Licensing Factors Predicting Crash Risk on Entry to and Progression Within the Heavy Vehicle Licensing System, Table E1, page ix. Accessed on 13 October 2025.

¹³ *Decision Regulatory Impact Statement – National Heavy Vehicle Driver Competency Framework*, Frontier Economics 2023, accessed at https://austroads.gov.au/__data/assets/pdf_file/0032/616964/NHVDCF_Decision_RIS.pdf

- Increasing jurisdictional harmonisation of licensing practices and adoption of the NHVDCF are both crucial for realising the benefits of the enhanced NHVDCF and pose the greatest challenge.
- Timelines for each jurisdiction to implement the reforms, including potential legislative and regulatory changes, systems updates, policy adjustments, and on-the-ground improvements to training providers.

The above program of work represents a significant and generational reform for the sector and requires significant cooperation between jurisdictions and extensive consultation with industry. Jurisdictions (especially smaller jurisdictions) may struggle to deliver key elements of the work plan, especially in an accelerated timeframe.


Managing impact on industry. While these reforms will deliver significant safety improvements and expected benefits to industry through the uplift in the skills and competency of drivers who progress through the reformed NHVDCF, they will also impose additional costs and require changes to current industry practice. To manage impacts on industry, a reasonable, staged transition period is necessary to help industry adjust to new regulatory requirements. For example:

- Improvements to the NHVDCF will directly impact training and assessment providers as well as applicants seeking a licence or licence upgrade. These changes will necessitate significant modifications to, among other things, staff training and accreditation, training materials, course structures, and assessment procedures. Imposing stricter requirements in an uncoordinated way could also affect a jurisdiction's training and assessment sectors, as well as the supply of drivers. Without appropriate harmonisation, mutual recognition of training and licence assessments across borders could lead to increased "licence shopping" between jurisdictions.
- Introducing new progression pathways to accelerate access to higher licence classes based on recognising time behind the wheel will benefit industry. However, introducing new pathways may also create new compliance, validity and assurance challenges such as potentially opening the door to fraud, which could undermine the expected outcomes of delivering competent, safe drivers that the reforms aim to achieve. Mechanisms to support attestation and assessment of experience will need to be developed in consultation with industry to ensure they are not overly burdensome.
- A staged and nationally consistent rollout of reform elements is essential for managing impacts on industry and road safety. Implementing policy reforms and new progression pathways before implementing the competency and assessment refresh risks a surge in licensing demand under the current underperforming NHVDCF.

5.4 **What federal, state and territory or private bodies are expected to handle the various stages and aspects of implementation?**

The high-level stages and associated roles of federal, state and territory, and private bodies in delivering the reforms include:

1. Austroads' establishment of a nationally agreed curriculum and supporting eligibility policy and standards. This must be detailed and rigorous enough to enable jurisdictional analysis, business case development, and strategic adoption.
2. Jurisdictional adoption, development and change management including regulatory, systems integration and uplift, and policy development and implementation. Victoria is currently developing reforms that will give effect to the in-principle national agreement, improving driver competency and reducing the risk of crashes.

-
3. Austroads enabling policies, systems and tools developed and available to support harmonised interactions and the consistent application of prescribed NHVDCF.

5.5 What timeframes are sensible for accelerated implementation of the reforms?

Austroads has committed to delivering core national work packages by June 2026, with a two-year period for jurisdictions to adopt and implement. Victoria is working towards these deadlines, subject to significant dependencies and uncertainties within the detailed planning and development stages of the national deliverables.

5.6 Data relevant to quantitative estimates of productivity impacts of the reforms? How best to quantify the impact of the reforms?

Victoria is currently drafting a regulatory impact statement including economic analysis; however, this data is not yet available for release.

6. Barriers to availability of EV truck charging infrastructure

6.1 Information request 4

The PC seeks views, data and evidence in relation to this proposal, including:

- regulatory barriers to the roll out of charging infrastructure for battery heavy powered EV trucks
- other practical barriers that may be limiting installation and operation of charging infrastructure
- policy issues affecting the long-term implementation of an effective network of publicly accessible EV truck charging infrastructure.

6.2 Background

While LZEHVs offer a potential solution to reducing freight sector emissions, they also face barriers to their widespread adoption. Their current limited availability, high upfront cost, access limitations due to their increased mass and lack of LZEHV appropriate charging infrastructure have resulted in delays to more definitive action in reducing emissions associated with freight transport operations.

Significant work is underway to deliver improved charging infrastructure; however, this has largely focussed on light vehicles. Direct investments in public charging infrastructure include the Victorian Acceleration of Zero Emissions Vehicle Adoption program and several major Commonwealth investments through the Driving the Nation Fund. Current work by the Commonwealth, states and territories includes complementary reforms under the National Electric Vehicle Strategy in important areas such as minimum charging infrastructure operating standards, industry and consumer information, and mapping tools.

There has been much less focus on charging infrastructure for heavy vehicles. This reflects the less developed technology, higher costs and more complex operational challenges for transitioning this transport segment, discussed in more detail below.

6.3 Regulatory and other practical barriers to the rollout of charging infrastructure for battery heavy powered EV trucks

The road freight industry faces increasing financial burdens of burgeoning compliance workloads, fuel prices and the cost impact of technological advances. Coupled with an ageing workforce and global labour shortages, the industry is faced with increasing costs with limited ability to pass these on to already cash-strapped consumers. The costs of decarbonising freight transport operations and achieving net zero by 2045 will contribute further to these challenges.

The effects of increasing costs are not confined to industry, with governments at all levels facing increasing budget constraints, and reduced public spending capacity for freight infrastructure. Burgeoning road maintenance obligations coupled with the continued need to invest in new infrastructure have placed many road authorities with difficult choices on how to spend their limited funds.

The Commonwealth Net Zero Transport Sector Plan calls for a ‘Rollout of charging infrastructure and establishing consistent national regulatory requirements will support electrification for heavy vehicles, with early opportunities for fixed routes and in metropolitan areas’.

Consistent and supporting regulations can encourage investments in cleaner technologies. Work is underway to address barriers to access, such as the development of pre-approved network maps for a range of LZEHVs. Victoria also intends to develop an electric charging strategy that will address the needs of LZEHVs and consider these questions more fully.

6.4 Policy issues affecting the long-term implementation of an effective network of publicly accessible EV truck charging infrastructure

Facilitating the increased uptake and long-term viability of LZEHVs will be a continued focus of the Victorian Government.

Increasing potential for electrification can be part of the solution to ensure long-term implementation of an effective electric vehicle network. A recent study commissioned by the Australian Renewable Energy Agency (ARENA)¹⁴ showed that battery electric vehicles are already feasible for last kilometre/urban freight requirements. Battery electric vehicles play a significant long-term role in road freight, particularly rigid trucks. The ARENA study also calls for a range of reforms, including identifying core freight routes for electrification, demonstration charging projects, funding options to support small operator access, and the development of a National Freight Electrification Strategy.

There is an opportunity to share facilities already being funded by government, including consideration to allow for electric vehicle charging facilities at Heavy Vehicle Rest Areas or options for LZEHVs to charge at bus depots when they are not being used.

¹⁴ *Electrifying Road Freight: Pathways to Transition*, AECOM, retrieved at <https://arena.gov.au/assets/2025/07/AECOM-%E2%80%93-Electrifying-Road-Freight-Report.pdf>

7. Curfews for EV trucks

7.1 Information request 5

The PC seeks views, data and evidence in relation to this proposal, including:

- comparative noise levels of electric heavy vehicles and internal combustion engine heavy vehicles
- how significantly any noise reduction ameliorates the negative impacts of night-time travel
- implementation considerations, given different levels of government have responsibility for the implementation of curfews, particularly local governments in residential areas
- how the effects of any reform could be quantified, including any data and modelling requirements

7.2 Comparative noise levels of electric heavy vehicles and internal combustion engine heavy vehicles

The Victorian Department of Transport and Planning has no specific data available about the difference in noise levels between zero emission vehicles and internal combustion engine vehicles. Trucks have long been a source of noise pollution, but this will change with electric powertrains.

7.3 How significantly any noise reduction ameliorates the negative impacts of night-time travel

The electrified powertrains in LZEHVs are much quieter than diesel engines, particularly at lower speeds and when accelerating and braking. However, a new Australian Design Rule (ADR) will require new electric, hybrid and hydrogen fuel cell cars, trucks and buses to be fitted with an Acoustic Vehicle Altering System (AVAS) from November 2025. AVAS are a safety alert or sound, emitted when an electric vehicle is travelling at low speeds in car parks, intersections and driveways to improve safety for pedestrians. This may negate some of the noise reduction benefits of LZEHVs.

7.4 Implementation considerations, given different levels of government have responsibility for the implementation of curfews, particularly local governments in residential areas

While truck curfews apply to certain roads within Victoria, these generally do not affect last kilometre delivery. It is often planning restrictions, rather than truck/road curfews, that prevent extended delivery times. That is, local councils place restrictions on properties (e.g. shopping centres) when they get planning permits approved.

Victoria has previously introduced a Local Government Bulletin that requests local councils allow deliveries to supermarkets two hours before and after current restriction times. However, this is not a mandate and has generally only been used in the past to alleviate and recover from supply chain disruptions.

Even if night-time deliveries are enabled with relaxed road and/or planning curfews, barriers to the uptake of additional delivery hours may include:

- Limited access to facilities for delivery due to restricted operating hours, or lack of a secure area where goods can be dropped and left until the facility opens.
- Limited ability of operators and receivers to maintain full staffing and operate extended hours with the associated additional costs.

Receivers may also require quiet equipment to receive deliveries at night-time, such as electric loading docks and pallet jacks.

OFFICIAL