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Growth curves

There are many growth curves routinely used in the analysis of growth processes 
that ultimately reach a steady state. These generally form a class of s-shaped or 
sigmoid curves. These are very useful for modelling populations, labour 
participation rates, inflation, productivity growth (not levels) or other processes 
where, in the long run, it is expected that the variable will not grow any further. For 
example, it is not plausible that age-specific per capita use of pharmaceuticals can 
continue to outstrip GDP growth over the very long run. It might therefore be 
supposed that in the long run, pharmaceuticals per capita grows at a fixed rate 
equivalent to GDP growth.  

Two growth curves of this kind were used in the analysis in this report (principally 
in modelling participation and other labour market variables in chapter 3), all of 
them modified by the inclusion of an additive constant. 

The logistic curve 

The logistic curve is: 
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At t=0, y(0) = c+a/(1+b) 

At t=���then if g<0, y(�������a , else if g>0, y(������� 

Where g<0, a>0 and b>0, then the logistic is a positively sloped growth curve that 
reaches the saturation point (c+a) from below (figure 2.1). Where g, a and b>0 then 
the logistic is negatively sloped and asymptotes to c from above. 

Where g<0, a<0 and b>0, then the logistic is negatively sloped and asymptotes to 
c+a from above. Where g>0, a<0 and b>0 then the logistic is positively sloped and 
reaches a saturation point of c from below.  

Where b<0 the logistic exhibits irregularities in its growth that make it unsuited to 
most growth processes (figure 2.1). It is probably sensible to impose the condition 
that b>0 in most empirical applications. 
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Figure 2.1 Logistic curves 
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Getting reliable estimates of the parameters of a logistic requires some knowledge 
of the time of inflection in the curve (i.e. the time at which the absolute value of the 
growth rate is maximised). The inflection point of a logistic is when: 
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which is only defined when b>0. The inflection point of a logistic is relatively 
inflexible. In all cases, the remaining growth in y from the inflection point is fixed 
at a/2.  

In many cases, the observed data do not show an obvious inflection point. 
Estimating a logistic function on such data without imposing an assumption about 
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when the inflection will occur will often give nonsensical results. This is true for all 
other s-shaped functions. However, sometimes it may be possible to infer inflection 
points based on prior knowledge or extrapolation of the double difference in the 
data series. It is apparent from figures 2.2 and 2.3 that the inflection point is where 
the double differenced data crosses the time axis. So even if an inflection point is 
not observed, one strategy is to: 

•  smooth the data to eliminate high frequency cycles in the data (such as through 
the use of a Hodrick-Prescott filter); and 

•  double difference the smoothed data and guess at what time it will reach zero. 
This ‘flex’ point can then be imposed in any estimation of the function. If the 
inflection point, f, can be calculated in this way then it implies that gfeb −= , 
which reduces the parameters to be estimated. 

Figure 2.2 Growth and acceleration of logistic curvesa 
Positively sloped logistic 
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a Based on the parameters of LOGISTIC 1 shown in the left hand top logistic curve in the previous figure. 

 



   

T2.4 AGEING  

 

Figure 2.3 Growth and acceleration of logistic curvesa 
Negatively sloped logistic 
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a Based on the parameters of LOGISTIC 1 shown in the right hand top logistic curve in the previous figure. 

The Richards curve 

This is a very flexible growth curve denoted by: 
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The Richards curve translates into many other growth curves for different values of 
λ (figure 2.4). It is a logistic where λ = -1, a Gompertz for λ = ±��� 	
�� 	�
Bertalanffy function at λ = 3.  

At t=0, λ+×+= )1()0( bacy  

At t=����
�
��������� acy +=∞)( , as with the logistic.  

The inflection point of a Richards function, which depends on λ, is not in fixed 
proportion to its asymptote. The time at inflection is: 
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If there is sufficient data, then the Richards curve can be estimated using non-linear 
least squares. However, there are often problems in convergence, and imprecise 
estimates are obtained if the data does not already include the inflection point. In 
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order that absurd estimates are not produced with shorter datasets, it is sometimes 
appropriate to impose restrictions on the estimation. 

First, it is often the case that a limit beyond which the curve will not go can be 
defined (L). In modelling, the long run can be restricted so that it does not exceed 
this limit. We imposed this condition using the following approach 

))(()}1/(1{)( myLemyac −×++=+ φ ,where y is the value of the observed curve at the last 
point (t = m). The term, )1/(1 φ+ e , is bounded between 0 and 1, depending on the 
value estimated by non-linear least squares for φ, allowing some latitude in reaching 
the limit. 

Second, there may be prior information that indicates that a particular point is likely 
to lie on the curve (say when t = v). In that case, λ+×+= )1( gv

v beacy . That, combined 
with information about the limit above, implies that: 
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so that a may not have to be estimated. 

Third, if the inflection point, t = f, can be anticipated, then one further parameter 

need not be estimated since )(1 gfeb −
λ

−= .  

In that case, the parameters g, λ and φ need only be estimated. 
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Figure 2.4 Richards’ curvesa 
At different values of λ 
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a The parameter values are as in LOGISTIC1 in figure Z.1, except that λ varies. 

 




