136 Oceanographic Processes of Coral Reefs

that the richness of zooxanthellae-free taxa showed a clear north—south gradient,
unrelated to that of the zooxanthellate hard and soft corals.

The total cover of soft and hard corals on the GBR remained uninfluenced by tur-
bidity and sedimentation. This finding indicates the potential for species replace-
ments: in certain circumstances, turbidity-tolerant taxa fill in the space for less
tolerant taxa, so cover remains the same but diversity declines. It also highlights the
need for detailed taxonomic inventories when conditions of coral reefs are to be
assessed. Total cover, which is the only parameter assessed in some environmental
studies, appears unsuitable for indicating changes such as increasing turbidity in the
reef environment until high very levels are reached (e.g., Devantier et al., 1998;
Morton, 1994). This is an important finding to consider when environmental impact
studies or reef monitoring data are interpreted.

Water quality is a key parameter in the ecology of reef benthos and may account
for differences in distribution and abundance of filter feeders such as soft corals.
Annual mean concentrations of particulate nutrients and chlorophyll increase toward
the shore (Furnas & Mitchell, 1986; Liston et al., 1992; Revelante & Gilmartin, 1982)
and toward the more temperate southern parts of the GBR (Furnas, in preparation).
Many octocorals are relatively inefficient in photosynthesis and depend on high lev-
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our own observation over 10 days in three visits). Such change in visibility equals a
loss of ~5 soft coral genera (Figure 4). We produced a simple and tentatively soft
coral biodiversity response model to visualise the long-term eftects of this change in
water clarity on the generic diversity of reefs around Low Isles (Animation 1). The
model was based on the following assumptions: pollution originated at the wet trop-
ics coast at 0.6 along-shore distance, events were discrete pulse discharges of sus-
pended particles, which were diluted with distance from the source while spreading
radially. The response was modelled based on the non-linear relationship depicted in
Figure 4. Wave- and depth-dependent settlement/resuspension cycles were ignored
for simplicity. We started at the status of present-day visibility using our recorded vis-
ibility and richness data, and created a scenario in which coastal visibility dropped
progressively to <3 m. Reduction in richness was noticeable well into the mid-shelf
region. The present-day centre of soft coral diversity, located on the mid-shelf north
off Cairns, diminished progressively, and disappeared except on the far northern edge
of the GBR at increasing levels of turbidity. Although such decrease in visibility is
hypothetical, the model nevertheless points at the importance of protecting the water
quality in the wet tropics for a long-term preservation of biodiversity on the GBR.
The world presently faces a global biodiversity crisis, with highest levels of

els of irradiance and additional food intake to cover their carbon demand (Fabricius
& Klumpp, 1995). Turbidity negatively affects light availability but may represent a
gain of suspended particulate food for organisms which are able to use it (Anthony
& Fabricius, in press). The relationship with sedimentation is more complex: reefs
completely free of sediment are generally also particularly wave-exposed or have
steep slopes so sediment accumulation is reduced (Fabricius & De’ath, in press),
which could contribute to the lower richness found on low-sediment reefs than neigh-
bouring reefs with the same visibility but more sediment.

The question whether increased runoff affects turbidity on the GBR is still con-
troversial. Larcombe and Woolfe (1999) suggest that turbidity and rates of sedimen-
tation do not increase with runoff, because rates are driven by the physical
environment (wave-related resuspension) and are limited by the surface area of depo-
sition. On the other hand, water clarity in a flood plume is severely reduced, although
the suspended material adds relatively little to the overall sediment weight (a *“visu-
ally spectacular” plume often contains only a few mg 1" suspended solids at greater
distance from the river mouth; discussed in Larcombe and Woolfe, 1999, based on
data from Taylor, 1996). While the coarse fraction settles out close to the river mouth,
the muddy, light, and nutrient-enriched sediment fraction may remain in the system
for months after discharge, where it will go through many cycles of deposition and
resuspension before being metabolised or trapped in a north-facing embayment.
Enhanced phytoplankton production due to the release of nutrients contributes fur-
ther to increase turbidity.

Wolanski and Spagnol (in press) reported of the declining visibility on Low Isles,
a coastal reef off Cairns (~16° 23’ S, 145° 34’ E). This island was investigated in
detail in 1927/1928, and a mean visibility of ~11 m was recorded over a 6-month
observation time. Today, maximum visibility rarely exceeds 8 m, and the mean is esti-
mated to be around 6 m (Wolanski & Spagnol, in press; Bell & Elmetri, 1995; and
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species of animals and plants are being eradicated every day in terrestrial systems.
Next to nothing is known about species extinctions in marine realms, and the under-
standing of patterns in biodiversity of coral reefs is rudimentary at best. Coral reefs
arc under incrcasing pressurc worldwide, with a large proportion of coral reefs being
already severely degraded, or at risk of degradation (Wilkinson, 1999). Three types
of human activities are principal causes for reef degradation: Firstly, extensive land
clearing, sewage discharge, and agricultural runoff affect coastal reefs by means of
increased sediment and nutrient loads. Secondly, fishing is so intense and destructive
in more densely populated regions that recruitment overfishing and downstream
effects on abundances of macroalgae and corals have been recorded (Hughes, 1994;
McClanahan et al., 1996). Thirdly, the frequency of bleaching and often death in all
zooxanthellate organisms, including hard and soft corals, is currently increasing due
to increasing maximum summer sea surface temperatures as a result of greenhouse
gas emissions (Hoegh-Guldberg, 1999). Many taxa have pelagic larvae, thus reefs of
the GBR which are numerous and connected by ocean currents may be replenished
by larvae from undisturbed areas farther upstream. More isolated reefs are not as
likely to experience recolonisation by pelagic larvae, and local extinctions in such
oceanic atolls are likely (Wilkinson, 1999). The establishment of protected areas,
which act as sources of larvae for exploited or disturbed areas, is the most promising
approach for the local protection of coral reef biodiversity. At the same time, the
health of coastal reefs is intricately linked with land management, and protected areas
can only fulfil their role if deterioration of water quality is avoided by appropriate
coastal zone and catchment management.

We do not know whether any keystone taxa are represented among the soft
corals which are missing in areas of high turbidity (these are, in particular, members
of the family Xeniidae). We also do not know how key functional processes (e.g., the
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chemical micro-environment on the reef, as soft corals constantly release anti-
fouling substances [Maida et al., 1995], or competition with other benthos groups)
are affected by the presence or absence of certain soft coral taxa. The study may serve
as an example of the complexity of responses and relationships in coral reefs. In the
presence of such sparse knowledge the precautionary principle in managing the adja-
cent land and preventing influx of nutrients and soils should prevail.
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FIGURE 1 Map of the GBR indicating the locations of
the sampled reefs. Colour codes define the position of
the sampling points on the continental shelf’: inner-shelf
reefs are located on the innermost 38% of the shelf
width, mid-shelf reefs are at 38 to 85%, and outer-shelf
recfs are >85% across the shelf. Southern reefs are all
reefs <45% along the shelf, with the northern reefs
representing the remaining 55%.

FIGURE 2 A spatial plot of soft coral richness, using
the traditional geodesic coordinate system
(latitude-longitude), and for casicr viewing, in the
coordinate system based on relative distance of a reef
across and along the GBR shelf (right). A local
regression spatial smoother was used to model
richness, and the fitted surface was then mapped back
to latitude—longitude coordinates.
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FIGURE 3 Left: Spatial plot of soft coral richness
(number of gencra encountered per reef). Local
regression spatial smoothers were used for the spatial
plots. Middle and right: Partial effects of visibility and
sedimentation on soft coral richness. The red line is
the partial effect (i.e., the effect of the explanatory
variable holding all other explanatory variables
constant), estimated by a local regression smoother
(loess, span of 0.5) (left panel), or by a linear model
(right panel). The blue dashed lines represent 95%
confidence intervals, and the orange dashed line
indicates the no-effects level. The points represent the
residuals.

FIGURE 4 Proportion of variation in total soft coral
richness explained by spatial (left arrows), physical
(right arrows), and a combination of spatial and
physical variables (central arrow).
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FIGURE 5 Left: Spatial plot of richness of
zooxanthellate soft coral taxa. Local regression spatial
smoothers were used for the spatial plots. Right:
Partial effects of visibility on soft coral richness. For
detailed legend see Figure 3.

FIGURE 6 Left: Spatial plot of richness of
zooxanthellae-free soft coral taxa. Local regression
spatial smoothers were used for the spatial plots.
Right: Partial effects of visibility on soft coral
richness. For detailed legend see Figure 3.

FIGURE 7 Proportion of variation in generic richness
of zooxanthellate (left) and zooxanthellate-free (right)
soft corals explained by the spatial variables and
visibility.
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FIGURE 10 Spatial plot of soft coral cover, hard coral
cover, and the proportion of soft corals of the total
coral cover (soft coral plus hard coral cover).

FIGURE 11 Soft coral cover, hard coral cover, and
the proportion of soft corals to total cover explained
by spatial variables. Physical variables had no effect
on cover.

FIGURE 12 Relationship between site-specific soft
coral richness, and soft coral cover (right) or hard
coral cover (left). The solid linc tepresents smooth fit
(df = 4, R* = 28.9). Dashed lines are 95% confidence
intervals.
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FIGURE 8 Spatial plot of turbidity (measured as
Secchi visibility) and of sediment deposits on the
reefs.

FIGURE 9 Proportion of variation in visibility and
sedimentation explained. Variation in visibility was
related to spatial variables (left arrows) and
sedimentation (right arrows). Variation in sediment
was explained by only spatial variables.
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FIGURE 13 Proportion of variation in site-specific
soft coral richness explained by spatial (left arrows),
depth (right arrows), and a combination of spatial and
physical variables (central arrow).

FIGURE 14 Mean levels of site-specific soft coral
richness (number of genera per site), turbidity
(visibility, in metres), and sediment (rated on a 4-point
scale) as a function of depth and shelf position. Values
are means, error bars represent 1 standard error.
Orange line, filled squares = inner-shelf; green line,
filled triangles = mid-shelf; and blue line, open
circles = outer-shelf reefs.
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FIGURE 15 Mean levels of soft coral cover, hard
coral cover, and the ratio between soft coral cover and
total coral cover (hard corals plus soft corals) as a
function of depth and shelf position. Values are means,
error bars represent 1 standard error. Orange line,
filled squares = inner-shelf; green line, filled

triangles = mid-shelf; and blue line, open

circles = outer-shelf reefs.

ANIMATION 1 Model of response in soft coral
richness (number of genera per reef; right panel) to
progressively decreasing water clarity (left panel). The
green dot indicates the location of Low Isles.






