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Abstract 

Quality attributes have been incorporated in analyses of efficiency in health care (e.g., 

hospitals) in various ways.  For example, as a utility enhancing output, as a utility reducing 

“bad output” or as an exogenous factor. In this paper we argue that these approaches are 

inconsistent with the net benefit criterion that is commonly used in cost-effectiveness analysis 

in health. As a solution we propose a method that involves including quality variables (framed 

from a utility reducing perspective) as input variables in the efficiency model. We then show 

that an appropriate transformation of the standard net benefit measure allows one to obtain 

economic efficiency measures that are consistent with maximising net benefit, and that these 

economic efficiency measures can be subsequently decomposed into technical and allocative 

components. An additional advantage of the approach is that shadow prices can be derived for 

quality when output prices (e.g., of public hospital services) are unavailable. The method is 

illustrated using data on treatments for respiratory infections in 45 acute care hospitals in 

Australia. 
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1. Introduction 

Expenditure on health services has been increasing at a fast rate in recent decades in many 

countries. For example, the proportion of GDP devoted to health care services has been 

increasing in each country in the OECD, and overall has increased from 4% in 1960, when the 

OECD was founded, to more than 9% across OECD countries in 2005 (OECD 2007). The 

proportion of GDP varies considerably across health systems. In particular, it is significantly 

higher in the predominantly privately-provided health care system in the USA, where health 

expenditure was estimated as 15.3% of GDP in 2005. Higher health expenditure has however 

not necessarily been reflected in better health outcomes, with the USA again most notably 

lying 24th in life expectancy amongst the 30 OECD countries. Common to all health systems 

is an increasing concern over performance, efficiency and more generally the accountability 

and incentives of providers such as hospital. Such concerns have lead to various government 

and private agencies having a particular focus on analysis of efficiency of hospitals within and 

across health systems, where Hollingsworth (2003) has documented an increasing 

proliferation of efficiency studies. 

 

However, one important drawback of many hospital efficiency measurement models is that 

they exclude quality measures  and hence run the risk of producing incentives for managers to 

seek out reduction in resource use or cost per admission at the expense of quality of care, an 

issue highlighted by Newhouse (1994) and Eckermann (1994) in critiquing hospital efficiency 

measures.  The desirability of taking into account the quality of services is reinforced when 

considering the impact of the quality of hospital services on expected outcomes beyond 

discharge. Health systems are characterised by incomplete integration across health services 

(Evans 1981) and hence the quality of hospital care within an admission can have significant 

impacts beyond hospital discharge on the wider health system. If hospitals are not held 

accountable for the expected effects of their care beyond discharge, perverse economic 
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incentives are created for practices such as quicker-sicker care, cost-shifting and quality-

skimping (Smith 2002). Such practices can reduce costs per admission, but beyond discharge 

have expected negative effects on health outcomes (outcome shifting) and consequently 

increase expected demands for, and use of, health care post-discharge (cost-shifting).  Cost-

shifting may manifest in increasing rates of readmission to hospitals, treatment in other 

institutional settings (general practice, specialist and aged care services), or informal care in 

non-institutional settings. In general, accounting for quality in hospital efficiency 

measurement would appear to be necessary to avoid perverse incentives for cost and outcome-

shifting and to create incentives for appropriate quality of services.  

 

Despite this, only a handful of studies have attempted to account for quality in models of 

hospital efficiency, as noted by Hollingsworth (2003). Studies such as Zuckermann et al. 

(1994) have attempted to model quality with exogenous variables, while Puig Junoy et al 

(1998) and Dawson et al (2005) have attempted to model quality with utility bearing output 

variables. More recently, Arocena and Garcia-Prado (2007) have specified quality as “bad 

output” variables, while Prior (2006), Eckermann (2004) and previously Morey et al. (1992) 

have specified quality as disutility bearing input variables. 

 

In this paper we look at the relative merits of various alternative ways of including quality 

variables in efficiency models. We conclude that the specification of quality as input variables 

framed from a disutility perspective has a number of attractive properties. First and foremost, 

it allows one to measure performance in a manner which is consistent with net benefit 

maximisation, which many authors (e.g., Claxton and Posnett 1996; Stinnett and Mullahy 

1998; Zehrhaus and Tambourne 1998; Willan and Lin 2001; Drummond et. al. 2005; Willan 

and Briggs 2006; Eckermann, Briggs and Willan 2008) argue is the most appropriate way to 

allow for costs and effects in health care. Second, it produces efficiency measures that are 
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relatively easy to calculate. Third, it avoids the selection of optimal points that are clearly sub-

optimal where quality variables are specified as weakly disposable bad outputs. Fourth, it 

allows one to obtain shadow price measures for the quality variables when prices of outputs 

are unobservable (as in public hospitals). Fifth, it allows one to calculate appropriate measures 

of allocative as well as economic efficiency, when an estimate of the “value” of a unit of 

quality is available.   

 

The remainder of this paper is divided into sections. In section 2 we provide a brief summary 

and critique of the alternative ways in which quality variables can be incorporated into 

efficiency models. In section 3 we outline our modelling approach, which specifies quality as 

an input variable, and also indicate how this model can be applied to compare efficiency 

consistent with the net benefit criterion and be used to derive shadow prices for quality 

attributes. In section 4 we provide an empirical application of our method to acute care 

hospitals in the state of New South Wales in Australia. Concluding comments are then 

provided in the final section. 

 

2.  Alternative methods 

Before we compare the merits of alternative ways in which quality could be incorporated into 

efficiency models we need to first explain what we mean by quality. There are many aspects 

to the quality of hospital services that one could consider, including technical aspects, 

timeliness, comfort, and so on. In the empirical part of this study we focus our attention on 

technical aspects measured by health effects (e.g. functional limitation, morbidity or 

mortality). However, various aspects of quality could feasibly be accommodated by the 

methods we discuss in this paper where cardinal measures are available. 
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i)  Ignore quality 

We consider a (hospital) production process where inputs (labour, equipment, etc.) are used to 

produce outputs (admissions). Initially we make the assumption that quality is uniform across 

all productive units and hence that quality can be ignored. We assume that a provider 

(hospital) produces a vector of m=1,2,...,M outputs, M
+∈Ry , using a vector of k=1,2,...,K 

inputs, K
+∈Rx .  The feasible production set, T, is defined as: 

 ( ){ }, | can produceM KT +
+= ∈y x R x y ,        (1) 

where the production technology is assumed to be convex and non-increasing in inputs, non-

decreasing in outputs, and exhibits strong disposability in inputs and outputs.1 

 

If the observed quantities ( ),y x  for a particular provider lies on the outer boundary of the 

production set (i.e., not on the axes and not in the interior of the set) then the provider is said 

to be technically efficient (Farrell, 1957).  If the observed quantity vector is not located on the 

efficient boundary of the technology set then the provider is said to be technically inefficient 

and the degree of technical inefficiency can be defined using a range of measures.  The most 

commonly used measures are radial output oriented and input oriented measures. For 

example, an input oriented technical efficiency measure can be defined as: 

 ( ){ }1( , ) min |TE T
θ

θ θ= ∈y x x,y ,        (2) 

where θ is a scalar that takes a value between zero and one.  For example, a value of θ = 0.8 

would indicate that the provider could produce the same output with 80% of the current input 

levels. 

 

                                                 
1 See Coelli et al. (2005) for further discussion of these properties. 
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Alternatively, an output oriented technical efficiency measure can be defined as: 

 ( ){ }2 ( , ) max |TE T
θ

θ θ= ∈y x x, y ,        (3) 

where in this case θ is a scalar that takes a value greater than or equal to one.  For example, a 

value of θ = 1.4 indicates that the provider could produce 40% more output with the current 

level of inputs. 

 

ii)  Quality as a “bad output” 

The above measures ignore quality issues.  Let us now assume that quality can differ across 

providers (hospitals) and define a vector of s=1,2,...,S quality outcomes, S
+∈z R , where higher 

values imply lower quality.  That is, the quality variable is framed from a utility reducing (or 

disutility bearing) perspective. For example, quality could be represented by the number of 

patients who contract infections in hospital, do not regain function or who die.  One then must 

decide how to include these quality variables into the production model.   

 

Arocena and Garcia-Prado (2007) have attempted to model quality by including it as a weakly 

disposable “bad output” in the production model.  The weak disposability assumption is used 

to ensure that one cannot dispose of the bad output without incurring some cost.2  In this case 

the production technology in equation (1) becomes: 

 ( ) ( ){ }, , | can produce ,M KT +
+= ∈y x z R x y z ,        (4) 

where the production technology is assumed to be non-increasing and exhibits weak 

disposability in bad outputs.3 

                                                 
2 Strong disposability in bad outputs implies that if the point 1 1 1( , , )x y z  is feasible, then so too is any point 

1 2 2 1 1 1( , , ) ( , , )≤x y z x y z .  Alternatively, weak disposability in bad outputs implies that if the point 1 1 1( , , )x y z  is 

feasible, then so too is any point 1 2 2( , , )α αx y z , where 0 1α≤ ≤ .  The former implies the latter but the 
converse need not apply. 
3 See Tyteca (1996) for further discussion of this type of technology in the context of including pollution 
measures in efficiency models. 
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This technology can be visualised by considering the diagram in Figure 1 where we consider a 

production technology involving one good output and one bad output. The production 

technology that has been drawn is piece-wise linear (for example constructed using data 

envelopment analysis) and the data points A, B, C and D represent the outputs of four firms, 

all of which are assumed to possess the same input vector (for the purpose of this illustration).  

The good output is assumed to possess the strong disposability property, which implies that 

one can freely dispose of unwanted amounts without penalty. Thus if the point C is feasible 

then so too is the point E, where one produces zero amounts of the good output.  The bad 

output, on the other hand, is assumed to possess the weak disposability property, which 

implies that one cannot freely dispose of unwanted amounts without penalty. Thus if the point 

B is feasible then the point F (and points in between) are not feasible.   

 

Figure 1:  Technology with weak disposability in bad output 

 

Thus the efficient boundary of the production technology is formed by 0ABCE, where the 

good output can be freely disposed but the bad output can only be disposed of if a 

• 

• 
• 

• 

• 
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B 
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E 

Bad output 
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0 E 
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proportional amount of the good output is also disposed of. Although widely used to deal with 

pollution in industrial and agricultural efficiency applications there are a number of 

drawbacks associated with this type of model. This becomes apparent when one attempts to 

define an efficiency measure. 

 

One efficiency measurement option is to expand the good output to the frontier.  Thus the TE 

measure in equation 3 becomes: 

 ( ){ }3( , , ) max | ,TE T
θ

θ θ= ∈y x z x, y z . (5) 

Using this measure, the inefficient firm at point D in Figure 1 will be allocated an efficient 

target point of D3. However, this point is clearly sub-optimal, because it is dominated by point 

B, which involves more good output and less bad output. Furthermore, the negative slope of 

the frontier at the point of projection implies a negative shadow price for quality, which is 

difficult to conceptualise. 

 

Another option is to look at shrinking the bad output as much as possible. Thus the TE 

measure would be: 

 ( ){ }4 ( , , ) min | ,TE T
θ

θ θ= ∈y x z x,y z . (6) 

Thus the efficient target point will now be D4.  This point is more sensible than point D3 

because it is not clearly dominated by other points. However, this assumes that all effort is put 

into quality improvement and not volume improvement.  As a consequence some authors (e.g. 

Färe et al 1989) have suggested efficiency measures involving simultaneous reduction in 

good outputs and expansion of bad outputs. One such option is the hyperbolic efficiency 

measure used by Arocena and Garcia-Prado (2007): 

 ( ){ }5 ( , , ) max | , /TE T
θ

θ θ θ= ∈y x z x, y z . (7) 
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In this case the efficient target point becomes something like D5.  Although the choice of the 

direction of this efficiency measure seems rather arbitrary, it can avoid the selection of points 

such as D3.4  However, equi-proportional contraction of bad outputs and expansion of good 

outputs can still project onto segments of the frontier such as BC (for example with a firm at 

G) and in situations when the prices of outputs are unknown (as is generally the case in public 

health) one is unable to derive shadow price information from this model. 

 

iii)  Quality as an input variable 

In this study we do not treat quality as a bad output.  Instead we treat it as an input variable.  

This has been done in the past by Moorey (1992) for US hospitals and Prior (2006) in the 

Spanish hospital sector, and has also been used in a handful of industrial and agricultural 

pollution studies. For example, see Giannakis, Jamasb and Pollitt (2005) in electricity and 

Reinhard, Lovell and Thijssen (1999) in agriculture. The logic associated with treating quality 

as an input variable can be illustrated using Figure 2. Here we provide a diagram of a 

production frontier where one axis represents traditional inputs ( x ) and the other a quality 

variable ( z , e.g., infection rate). For the purpose of the illustration we assume that there is 

only one input (e.g., staff) and all firms produce the same amount of output (e.g., admissions). 

The boundary of the production technology is defined by the isoquant FABCE. Points on this 

isoquant (e.g., point B) are technically efficient while those to the north east (e.g., point D) are 

technically inefficient.  The basic notion is that a hospital manager attempts to minimise the 

use of inputs ( x , e.g. nurses) and maximise quality (reduce z , e.g. infection) for a given level 

of output ( y , e.g. admissions). If the manager faces no penalties for poor quality then one 

could argue that the “price” of quality he/she faces is zero and hence the optimal (cost 

minimising) point of operation is on the vertical portion of the isoquant.  However, improving 

                                                 
4 Another option could be to use directional distance functions.  For example, see Färe and Grosskopf (2000).  
However, the selection of which direction to take is also arguably arbitrary in this case. 
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quality measured by reduction in z clearly has value (e.g. to the health system and society more 

generally) and hence we argue managers should face incentives, and be held accountable in 

performance measures, that reflect value of quality.5   

Figure 2:  Technology where quality is an input variable 

 

One can define a range of efficiency measures for this type of technology.  For example, one 

could define a tradition radial input oriented TE score as: 

 ( ){ }6 ( , , ) min | ,TE T
θ

θ θ θ= ∈y x z x,y z , (8) 

where inputs (including quality) are proportionally reduced, producing the point D6 in Figure 

2.  Alternatively, one could focus solely on the “standard inputs” and reduce it while holding 

quality and output constant.  That is: 

                                                 
5 Efficiency measures themselves can also be argued as creating appropriate incentives for quality. This is 
particularly the case for hospitals given the extent to which transaction conditions diverge from those of a perfect 
market (Williamson 1975).  Providers are unlikely to be held accountable for quality of care by patients leading 
to the need for regulation of quality to create appropriate incentives which Donaldson and Gerard (1993) term 
‘the visible hand’.  This is the case given hospital patients typically have bounded rationality (Simons 1957) 
from high complexity, uncertainty and information search costs leading to a-symmetry of information (Arrow 
1963, Akerlof 1970) between patients and providers. Further, patient inability to distinguish quality ex-ante is 
not necessarily helped ex-post given outcomes are relative to counterfactual alternative treatment.  
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 ( ){ }7 ( , , ) min | ,TE T
θ

θ θ= ∈y x z x,y z , (9) 

producing D7 in Figure 2.   

 

One could also aim to derive a measure of potential quality improvement by reducing the 

quality variable while holding outputs and standard inputs constant: 

 ( ){ }8 ( , , ) min | ,TE T
θ

θ θ= ∈y x z x,y z , (10) 

which provides a target point of D8 in Figure 2.   

 

These latter three measures have various advantages with respect to those based on the “bad 

outputs” model. First, they are technically easier to compute, with many standard DEA 

programs able to compute them easily. Second, unlike some of the “bad output” methods, 

they do not produce projected points which are sub-optimal. Third, they allow one to obtain 

shadow price measures for the quality variable, given that input price data is available – 

which is generally the case. Last, and by no means least, they allow one to define performance 

measures which are consistent with the net benefit criterion, including a measure of net 

benefit (economic) efficiency conditional on the “price of quality” (e.g., a threshold value per 

unit of effect). 

 

iv)  Quality as a “good output” 

Historically, endogenous specification of quality variable in hospital efficiency measurement 

have been suggested under a ‘quality-quantity trade-off’ (Newhouse 1970), where quality and 

quantity are considered from a utility bearing perspective. In this case the production 

technology in equation (1) becomes: ( ) ( ){ }, , | can produce ,u M K uT +
+= ∈y x z R x y z , where 

uz represents the vector of s=1,2,...,S quality outcomes, S
+∈z R  framed from a utility bearing 
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perspective.  That is, where higher values imply higher quality.  For example, quality could be 

represented by the number of patients who do not contract infections in hospital, regain 

function or who survive.   

     

However, such a definition of technology while appropriate if y  and uz  represented distinct 

output quantities of utility bearing goods becomes problematic in attempting to represent 

tradeoffs between quality and quantity of services, such as those in hospitals.  For example, 

for a given input vector x , increasing y  (e.g., admissions) while uz  (e.g., number of 

survivors) remains constant, or more generally increasing y  at a faster rate than uz , will not 

necessarily increase utility. In such cases a higher number of admissions implies a higher rate 

of disutility per service (e.g., higher mortality rate). Hence, such a representation of a 

technology, with quality and quantity specified as utility bearing outputs, in general, does not 

support Pareto improvement with increasing outputs for given inputs, with an inability to 

meaningfully represent utility in quality-quantity space.6    

 

Activity per se is not necessarily utility bearing in hospitals, health care or service industries 

more generally where this implies lower quality (higher disutility) per service. In health 

economics this has lead to notion of a derived demand for health care services, with utility 

from health care services argued as derived from health outcomes alone (Culyer 1992).  

Consequently, health outcomes alone framed from a utility bearing perspective have been 

proposed as output measures. Examples include use of survival as a quality variable in Puig-

Junoy (1998) and more generally effects framed from a utility bearing perspective (survival, 

                                                 
6 The same problem does not exist in the case where quality is an input.  This is because if one holds inputs and 

quality (e.g., morbidity) constant and increases output (activity) one obtains a increase in survival rates. 
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life years, quality adjusted life years) in Dawson et al. (2005).7  In this case the production 

technology in equation (1) becomes:  ( ) ( ){ }, | can produceu M K uT +
+= ∈x z R x z , This 

specification assumes that all effort is put into quality improvement and the underlying 

economic objective in the simplest case of quality represented by one effect is minimising 

average cost per unit of effect (e.g., minimise cost per survivor). However, minimising cost 

per unit effect has been rejected by many health economists for failing to reflect the 

incremental and non-tradable nature of effects of care (Grossman 1972; Drummond et al. 

1987; Mcguire, Henderson and Mooney 1988; Weisbrod 1991; Drummond et al. 1997; 

Drummond et al. 2005).   

 

As we consider in detail in section 3, maximising net benefit has been established in health 

care as a more appropriate objective than minimising average cost per unit of effect given 

these characteristics. Further, we show that application of a correspondence result permits the 

construction of a measure of economic efficiency that is consistent with maximising net 

benefit, which can be decomposed into the radial TE measure in equation (6) and an 

allocative efficiency component. In addition, we outline how shadow price measures for 

quality variables can be derived using this method. 

 

v)  Quality as an exogenous factor 

One simple option is to assume that the level of quality in each hospital is exogenously 

determined in some manner, and then introduce these quality variables as ways of explaining 

differences in observed levels of efficiency.  For example, in the study of Zuckermann (1994) 

hospitals with standardised mortality rates in either the lower or upper decile (highest or 
                                                 
7 Strong disposability in bad outputs implies that if the point 1 1 1( , , )x y z  is feasible, then so too is any point 

1 2 2 1 1 1( , , ) ( , , )≤x y z x y z .  Alternatively, weak disposability in bad outputs implies that if the point 1 1 1( , , )x y z  is 

feasible, then so too is any point 1 2 2( , , )α αx y z , where 0 1α≤ ≤ .  The former implies the latter but the 
converse need not apply. 
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lowest quality of care respectively) had their costs adjusted in comparison to hospitals in the 

tenth to ninetieth percentile.  However, this exogenous modelling of standardised mortality as 

a quality variable resulted in both the highest and lowest quality providers having their 

performance (expected relative to actual costs at their level of mortality) increased relative to 

other providers.  In general, exogenous specification of quality variables has a number of 

drawbacks, such as (i) implying that managers in hospitals have no control over quality 

levels; (ii) an inability to properly model the resource implications of changes in quality; and 

(iii) the resulting model does not allow one to derive shadow price measures for quality.   

Hence, an endogenous rather than exogenous specification of quality variables is suggested.   

 

3.  Methodology 

Net benefit as the underlying objective in health care 

Concerns about specifying quality in efficiency measures so as to create appropriate economic 

incentives relate to the appropriateness of the underlying objective function that efficiency 

measures represent. Many health economists have stressed the importance of evaluating 

strategies relative to a comparator and informing decision makers of incremental rather than 

average cost–effectiveness ratios (Drummond et al. 1987; Australian Department of Health 

and Aged Care 1993; Ministry of Health of Ontario 1994; Drummond et al. 1997; National 

Institute of Clinical Excellence 2001; Drummond et al. 2005).  This rejection of average cost 

effectiveness ratios in favour of incremental cost effectiveness ratios is based on the 

incremental and non-tradable nature of health effects of care in treated populations (McGuire 

et al. 1988, p.32; Eckermann 2004, pp.134-135).  

 

Considering incremental health effects relative to the incremental cost of alternative strategies 

in processes of health technology assessment was suggested by Claxton and Posnett (1996) as 

being equivalent to maximizing the net value of incremental effects of a technology at a 
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threshold willingness to pay (WTP) for effects minus incremental costs. Stinnett and Mullahy 

(1998) and Zehrhaus and Tambour (1998) describe this net value of incremental effects less 

incremental costs for a strategy relative to a comparator as incremental net benefit. Formally, 

incremental net monetary benefit (INMB) per patient can be represented for a particular 

strategy, relative to a comparator (c), as: 

 ( ) ( )c cINMB k E E C C= − − − , (11) 

where k represents a threshold value per unit of effect, E is effect per patient, and C is cost per 

patient. The maximisation of net benefit has consequently become established in health 

technology assessment as the objective underlying public decision making in comparing 

alternative health care strategies allowing for costs and effects of care.   

 

More generally, Graham (1992) provides a formal justification of the net benefit criteria, 

outlining necessary and sufficient conditions for Pareto efficient public expenditure under 

uncertainty, where the threshold value k represents the minimum marginal cost of producing a 

unit of effect given current technology and resources (budget). Hence, if efficiency 

measurement for services, such as those provided by a hospital, are to align with Pareto 

efficient solutions, an objective function for including effects in efficiency measurement 

involving the maximisation of net benefit following Graham (1992) is suggested. 

 

Measuring economic efficiency consistent with maximizing net benefit  

We would like economic efficiency measures across health care providers, such as hospitals, 

to be consistent with maximising net benefit so as to provide incentives supporting Pareto 

efficiency. However, while the net benefit formulation in equation (11) represents an 

objective which can appropriately trade off the value of incremental effects and costs of 

(quality of) care, it does not lend itself to the types of efficiency measurement methods 

described earlier.  We now provide a transformation which can link these concepts. 
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First, we assume that providers face a common comparator (in practice this means costs and 

effects should be adjusted across providers for differences in patient population risk factors 

such as age) and hence in a comparison across providers the objective becomes to maximise: 

 NMB=kE-C (12) 

Next we translate the utility enhancing effect (E) per patient into a utility reducing effect (z) 

via a linear transformation of the form: z Eα= − , where α  is an appropriate constant.  For 

example, if E is survival, then z is mortality and α  is 1, while if E is life years, then z is life 

years lost and α  is maximum life-years.  Thus equation (12) becomes: 

 ( )NMB k z C k kz Cα α= − − = − − . (13) 

 

Given that k and α  are constants (the same for every provider compared), the maximization 

of NMB in equation (13) is equivalent to the minimization of kz C+ , which we will call 

quality inclusive cost (QIC).  Furthermore, given that we potentially have multiple input 

variables and multiple quality variables (each of which should be included to ensure coverage 

of effects consistent with net benefit), we can rewrite kz C+  as: 

 ' 'QIC = +v z w x , (14) 

where K
+∈w R is a vector of k=1,2,...,K input prices for traditional inputs x , and S

+∈v R is a 

vector of s=1,2,...,S quality prices, for quality variables (framed from a disutility perspective).  

Finally, we drop the per-patient assumption associated with equation (11) and replace it with 

the assumption that the calculation is for a given bundle of services that the provider produces 

(i.e., the vector of outputs, y). Using the technology and notation defined earlier, we obtain 

the point of minimum quality inclusive cost as: 

 ( ){ }
,

( , , ) min | ,QIC T= + ∈
x z

y x z w'x v'z x, y z .  (15) 
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This relationship provides a multi-output, multi-quality generalisation of the net benefit 

correspondence theorem in Eckermann (2004). 

 

A generalised net-benefit correspondence theorem  

There is a one-to-one correspondence between maximising the net benefit of a bundle of 

services, and minimising quality inclusive cost of that service bundle, ( w'x ) plus the value of 

effects framed from a utility reducing perspective ( v'z ), where the following conditions are 

satisfied:  

(i) The vector of quality variables framed from a disutility perspective (z) covers 

effects included in net benefit (coverage condition); 

(ii) Expected differences in costs and effects due to exogenous factors are adjusted for 

(common comparison condition). 

 

Applying the net benefit correspondence to efficiency measurement  

The net benefit correspondence theorem provides a general method for comparing the efficiency of 

providers that is consistent with an economic objective of maximizing net benefit.  Net benefit is 

maximised when quality inclusive cost is minimised.   

One can then define an economic efficiency measure as:  

 
( , , )( , , ) QICEE =
+
y x zy x z

w'x v'z
, (16) 

which is the ratio of minimum QIC to observed QIC.  This EE measure will take a value 

between zero and one, with a value of one indicating full economic efficiency. 

 

One can also decompose this economic efficiency measure into technical and allocative 

components.  For example, one could use TE6 as a measure of technical efficiency and then 

obtain a measure of allocative efficiency in a residual manner as: 



Eckermann and Coelli   17

 
6

( , , )( , , )
( , , )

EEAE
TE

=
y x zy x z
y x z

. (17) 

The TE and AE measures also take a value between zero and one. 

These measures can be illustrated by considering the simple example in Figure 3, which is a 

generalisation of the example in Figure 2.  In this new figure we have inserted an iso-cost line 

which has slope equal to –w/v (which reflects the relative prices of the traditional inputs and 

of the quality effects).8  For firm D, minimum QIC is obtained at point C, which is the point 

of tangency between the iso-cost line and the isoquant.9 Technical efficiency is equal to the 

ratio 60 / 0TE D D= . Economic efficiency and allocative efficiency can also be obtained using 

ratios in this diagram.  That is, 0 / 0EE H D=  and 60 / 0AE H D= .10 

 

Figure 3:  Efficiency decomposition 

                                                 
8 To be precise, we should call this line an iso-QIC line, since quality variables are included in the input vector.  
However, to reduce the introduction of too much additional terminology, we use the iso-cost terminology, which 
is a widely used term. 
9 An iso-cost line closer to the origin will not be feasible because it does not intersect the technology.  
Alternatively, a higher iso-cost line will intersect with feasible points in the technology but will imply a higher 
QIC. 
10 The logic behind these ratios can be seen by noting that one could draw additional iso-cost lines through points 
D6 and D. 
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It is important to note that being on the efficiency frontier in Figure 3 is a necessary but not 

sufficient condition for net benefit maximization. For example, if the provider operating at 

point B faced the relative prices reflected in the given iso-cost line, it is clear that even though 

it is technically efficient, it has economic inefficiency because it does not minimise QIC and 

hence does not maximize net benefit.   

 

Implicit value of quality (shadow price)  

In Figure 3, provider C is operating at a point of minimum QIC, given the specified price ratio 

(reflected in the slope of the iso-cost line). However, providers A, B and D are judged as being 

allocatively inefficient, if they also faced this price ratio. For each provider one could ask the 

question: What price ratio would lead one to conclude that this provider is allocatively 

efficient? The subsequent price ratio obtained for a particular provider is said to be an 

estimate of its shadow price ratio ( /s sw v ).  For example, for the case of provider D in Figure 

3, the shadow price ratio would be negative of the slope of the line BC. In the event that one 

has information on the price of the input, w (e.g., this could be nursing labour), and one 

assumes that the shadow price and observed price of this input coincide, then one can then 

easily calculate an estimate of the shadow price of quality, as /( / )s s sv w w v= . Hence, the 

shadow price for quality can be estimated in the absence of prices for admission for individual 

providers or similarly for an indicative industry provider with average industry costs and 

outcomes.11     

 

The above discussion of shadow price calculation has been presented in terms of the simple 

example in Figure 3. The calculation of shadow prices in cases where the model contains 

multiple input variables (e.g., nurses, doctors, equipment, etc.) and multiple quality variables 

                                                 
11 Eckermann (2004) also illustrates that an ‘industry’ shadow price can be alternatively estimated as the value 
where cost share weighted industry allocative, or equivalently economic, efficiency is maximized (noting that 
technical efficiency is invariant to changes in values). 
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(e.g., mortality, infection, etc.) is also straight forward.  In the situation where the frontier is 

calculated using a parametric method, derivative calculations are involved.  For example, see 

Grosskopf et al (1995). Alternatively, when a non-parametric frontier estimation method is 

used, such as the data envelopment analysis (DEA) method used in this study, the calculation 

of the shadow prices are obtained as a by-product of the linear programs involved. For 

example, see Coelli et al (2005, p163). 

 

Estimation of the frontier technology 

The efficiency scores and shadow price measures described above can be calculated when one 

has obtained an estimate of the frontier technology. There are various methods that can be 

used to estimate a frontier technology. These methods can be generally grouped into one of 

two categories: parametric methods (such as stochastic frontier analysis or SFA) and non-

parametric methods (such as DEA). These different methods have particular advantages and 

disadvantages. For example, DEA has the advantage that one does not need to assume a 

particular functional form for the technology (such as Cobb-Douglas), while SFA has the 

advantage that the issue of data noise is explicitly addressed. In this study we have chosen to 

use the DEA method because it is easy to implement and widely applied in health sector 

studies (e.g., see Hollingsworth 2003).  The DEA methods used in this paper are equivalent to 

the technical efficiency and cost efficiency DEA linear programs listed in efficiency 

measurement books such as Färe et al (1994) or Coelli et al (2005). 

 

4.  Application to acute care hospitals 

In this section we analyse the performance of 45 Australian acute care public hospitals in the 

State of New South Wales, Australia, with respect to treating patients for DRG E62a 

(respiratory infection). The comparison is based on 1998-99 cost and admission data provided 

by the Australian National Hospital Cost Data Collection (NHCDC) as part of the annual 
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sample used to construct DRG weights (Australian Government Department of Health and 

Aged Care 2000), along with data on in-hospital mortality rate provided by the New South 

Wales Health Department. The average costs per admission and mortality rates for these 

forty-five hospitals (in treating patients for DRG E62a) are plotted in Figure 4, with cost per 

admission on the vertical axis and mortality rate on the horizontal axis. Summary statistics are 

also provided in Table 1, where we observe that the mean number of admissions per year is 

63, with an average cost of $6,332 and an average mortality rate of 22%. 

 

It is important to emphasise that the application in this section has been intentionally 

simplified so as to more clearly illustrate the new methods.12 In this empirical example there 

is just one output variable (patients admitted with this type of respiratory infection), one 

quality variable (mortality) and one input variable (cost). Various simplifying assumptions are 

made in our study. First, we implicitly assume that there are no economies of scope between 

this output and other outputs in the hospitals (e.g., hip replacement surgery). Second, in order 

to allow us to plot the estimated frontier in two dimensions, we assume a constant returns to 

scale technology. Third, we make use of a single aggregate input variable, namely cost. This 

will be appropriate if all hospitals face similar prices for all inputs (e.g., nursing labour, 

medicines).13  Fourth, we assume that all hospitals admit patients with similar distributions of 

risk factors (e.g., age, co-morbidities).   

                                                 
12 The method can be implemented without these simplifications, however in our assessment the extra detail 
would make the illustration less informative. 
13 It should also be noted that any measures of “technical efficiency” calculated may also contain a component of 
allocative efficiency if a hospital does not combine (traditional) inputs in optimal proportions given the 
prevailing price ratios. 
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                       Figure 4:  Efficiency measurement for DRG E62a 
 

In Figure 4, the DEA frontier is plotted, along with an iso-cost line that corresponds to a price 

of v=$10,000.  Given the simplified nature of the empirical example, the frontier in this case 

can be represented using a unit isoquant in two dimensions. The frontier is defined by 

hospitals, 33, 17 and 26. These hospitals are technically efficient, in the sense that one cannot 

proportionally reduce the input variables (cost and quality indicator variable) and still remain 

within the estimated frontier. For the given iso-cost line, hospital 17 is economically efficient, 

in the sense that quality inclusive cost (QIC) per admission is minimised,14 while all other 

hospitals are economically inefficient because they could potentially reduce their QIC per 

admission. 

                                                 
14 Refer to equation (15). 
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Economic efficiency (EE) measures, obtained using equation (16), are listed in Table 2 for 

each hospital, for four different values of v: $0, $10,000, $25,000 and $50,000 per mortality 

avoided. Looking first at the case of v=$10,000, we observe that hospital 17 has an EE score 

of 1 as expected. The sample average EE score is 0.57, suggesting that the average hospital 

could reduce QIC by 43% per admission. The ranks indicate that hospital 14 is the least 

efficient, with an efficiency score of 0.27, implying a potential 73% reduction in QIC. 

 

In some instances, efficiency levels can vary with hospital size. For example, smaller 

hospitals in regional locations may have low capacity utilization in some periods.15 If this was 

the case, a simple raw average measure may provide a misleading indication of the level of 

efficiency in the industry. As a consequence, we have also reported weighted means, where 

the weights are either number of admissions or total costs. However, the values obtained 

differ from the unweighted mean by no more than a few percentage points, suggesting that 

this is not a big factor in this case. 

 

As noted earlier, Table 2 contains EE scores corresponding to four different values of v. A 

value of v=$0 implies that quality has no value. This can be visualised as being equivalent to 

inserting a vertical iso-cost line in Figure 4. In this case hospital 26 has the highest EE and 

mean EE is essentially unchanged at 0.57. When v values of $25,000 and $50,000 are 

considered, the iso-cost line becomes flatter, so that hospital 33 has the highest EE and mean 

EE drops to 0.55 and 0.45, respectively. The rankings of the frontier hospitals (17, 26 and 33) 

do not change substantially as the value of v changes, but for some hospitals there are 

substantial changes. For example, as v increases, the rank of hospital 7 increases from 3rd to 

                                                 
15 Also note that since constant returns to scale (CRS) has been imposed on the production technology in this 
empirical illustration, if scale economies do exist, one could find that efficiency levels may vary with hospital 
size for this reason as well. 
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39th while that of hospital 11 decreases from 37th to 5th. This makes clear that if quality is 

ignored in the efficiency analysis, when the true value of quality is say $50,000, per mortality 

prevented one can obtain very misleading relative efficiency measures and rankings. 

 

The economic efficiency (EE) measures in Table 2 can be decomposed into technical 

efficiency (TE) and allocative efficiency (AE) components, by calculating TE using equation 

(8) and then calculating AE in a residual manner using equation (17). These measures are 

reported in Table 3, for the case of v=$25,000. The results indicate that TE is the main 

contributor to EE, with a mean of 0.66 for TE versus a mean of 0.85 for AE. The value of 

0.85 suggests that, if the average hospital was technically efficient (operating on the frontier), 

it could reduce QIC by a further 15% if it were to use an optimal mix of inputs (traditional 

inputs and quality measures) given the specified price ratios. These additional savings would 

not have been identified if a value was not assigned to quality. 

 

The importance of assigning a value to quality, instead of focusing on technical efficiency or 

average cost effectiveness (i.e., cost per survivor) is illustrated in Table 4, where we list the 

efficiency scores obtained using these three methods, along with the corresponding ranks. In 

some cases the ranks do not change a lot, while in other cases there are large changes. For 

example, in the case of hospital 7, the rank is 5 and 7 for TE and average C/E, respectively, 

while it falls to 29 when EE is considered. 

 

Shadow prices 

Analysts can use the above methods to advise policy makers regarding economic efficiency 

levels corresponding to different assumed values for the quality of services. However, they 

can also obtain estimates of the implicit value being placed on quality, as reflected in the 

current behaviour of providers. That is, one can derive the shadow price for quality of each 
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provider. In this application, the shadow price of quality for each hospital can be interpreted 

as the amount of money needed to avoid one mortality if it were technically efficient.16   

 

Estimated shadow prices are listed in Table 5. These shadow prices differ according to which 

part of the frontier the hospital is projected onto. For individual hospitals they range from $0 

(where hospitals are projected onto the horizontal part of the frontier with hospital 26 as the 

only peer)17 to more than $24,356 (i.e., arbitrarily large) where hospitals are projected onto 

the vertical portion of the frontier, with hospital 33 as the only peer. An estimate of the 

industry-level shadow price for quality is found to be $3,523 per death avoided, calculated at 

the median cost and mortality rate across hospitals (see in Table 5). This industry shadow 

price for quality may appear low. However, given that hospital administrators generally face 

strong budgetary pressure to minimise cost per admission, with only indirect (e.g. social) 

pressures to seek quality outcomes, it is not surprising to find a shadow price which is not far 

from the zero price that would result from quality incentives being completely absent. Such 

shadow prices of quality cannot be estimated with output specifications of quality variables in 

the absence of prices for admissions in public hospitals.   

 

Correspondence conditions 

Application of the net benefit correspondence theorem has been presented illustratively with 

the explicit assumption that coverage and comparability conditions are satisfied. Satisfying 

the comparability condition in practice would require that costs and effects across hospitals 

are adjusted for differences in patient risk factors. Satisfying the coverage condition in 

practice would require that the scope of measured effects was widened and effects and costs 

                                                 
16 Shadow prices are derived from the slope of the estimated frontier and hence are estimates that (to be precise) 
only correspond to a firm that is operating on the frontier itself.  Hence, for technically inefficient firms, these 
measures would be applicable if they became technically efficient. 
17 A “peer” hospital is one which is used to the frontier for a particular inefficient firm.  An inefficient firm can 
have one or more peers, depending on the point of projection onto the estimated frontier. 
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point beyond point of separation were accounted for, either directly with data linkage 

(Holman et al.1999; Wolfson et al. 2002) or by modelling expected costs and effects 

conditional on patient health state at point of separation (Weinstein at al. 1980; Petitti 2000; 

Hunink et al. 2001; Eckermann 2004). Eckermann (2004, 2006) demonstrates that satisfying 

these comparability and coverage conditions are necessary and sufficient to prevent efficiency 

measures creating incentives for choosing less complex patients (cream-skimming) and cost 

(and outcome) shifting. Hence, the empirical findings in the illustration should be qualified to 

the extent they fail to adjust for differences in patient risk and effects beyond separation and 

hence create incentives for cream-skimming and cost-shifting, respectively. However, 

whatever specification of quality were used, satisfying coverage and comparability conditions 

would be required to avoid the cream-skimming and cost-shifting incentives that plague 

efficiency measures in health care.  

 

5. Conclusions 

The maximisation of net benefit is an appropriate economic objective where societal value of 

quality is an important consideration in areas such as health, public services and 

environmental economics (Graham 1981, 1992; Claxton and Posnett 1996; Stinnett and 

Mullahy 1998; Zehrhaus and Tambourne 1998; Willan and Lin 2001; Drummond et. al. 2005; 

Willan and Briggs 2006; Eckermann, Briggs and Willan 2008).18  The objective of this paper 

has been to clarify the use of quality variables in efficiency measures to reflect (and create) 

economic incentives for appropriate quality of care, and in particular identify a method for 

comparing the economic efficiency of providers consistent with maximising net benefit.  

 

                                                 
18 Cost-shifting and cream skimming are also important considerations in creating incentives for appropriate 
quality of care in health and public service industries. 
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A method that enables quality variables to be incorporated into standard efficiency 

measurement methods, which is consistent with maximising net benefit, has been identified 

and its application illustrated. The input specification of quality effects framed from a utility 

reducing (disutility) perspective has been shown to, unlike alternative specifications, allow:  

1. estimation of economic efficiency, and its decomposition into technical and 

allocative efficiency, consistent with maximising net benefit and;  

2. estimation of the shadow price for quality of care, in the absence of prices for 

services per se, such as admissions in hospital.    

Input specifications for quality variables have previously been applied to estimate technical 

efficiency in health (Morey 1992), as well as in environmental and other areas (Giannakis, 

Jamasb and Pollitt (2005) in electricity and Reinhard, Lovell and Thijssen (1999)).  However, 

the additional advantages of allowing economic (and allocative) efficiency measures 

consistent with maximising net benefit and shadow prices in the absence of prices for outputs 

have not been previously noted.   

 

Consequently, the methods presented offer a general framework for performance 

measurement to reflect and hence create incentives for net benefit maximising quality of 

services. The methods have been illustrated in comparison of hospitals, but are suggested to 

be appropriate wherever maximisation of net benefit is an appropriate objective, or 

equivalently where societal value of quality is an important consideration. The proposed 

framework and method illustrated in this paper could, for example, be analogously applied to 

pollution abatement in industrial or agricultural settings, where efficiency measures that are 

consistent with maximising net benefit are desirable.  
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Table 1:  Summary Statistics  

 Admissions 
Cost per 

admission Mortality rate 

mean 63 $6,332 22.42% 

std dev 49 $1,851 10.56% 

minimum 10 $3,590 3.33% 

maximum 184 $13,128 40.00% 
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Table 2:  Economic efficiency conditional on threshold value of death avoided  

Hospital $0 rank $10,000 rank $25,000 rank $50,000 rank 
1 0.74 7 0.54 29 0.41 41 0.28 44 
2 0.39 43 0.41 43 0.4 43 0.32 40 
3 0.45 40 0.54 28 0.61 15 0.58 12 
4 0.29 44 0.37 44 0.43 39 0.43 22 
5 0.7 8 0.53 31 0.4 42 0.28 43 
6 0.44 41 0.54 27 0.62 14 0.61 8 
7 0.87 3 0.63 13 0.47 29 0.32 39 
8 0.6 20 0.65 10 0.64 11 0.53 13 
9 0.49 33 0.55 24 0.57 16 0.5 14 
10 0.54 27 0.68 8 0.8 5 0.8 3 
11 0.48 37 0.6 18 0.71 8 0.72 5 
12 0.43 42 0.42 42 0.38 45 0.29 42 
13 0.59 23 0.48 40 0.39 44 0.27 45 
14 0.27 45 0.36 45 0.44 37 0.47 17 
15 0.54 26 0.63 12 0.66 9 0.59 9 
16 0.58 24 0.55 23 0.49 25 0.37 28 
17 0.93 2 1 1 0.99 2 0.81 2 
18 0.48 36 0.49 39 0.45 34 0.36 30 
19 0.79 5 0.84 4 0.81 3 0.66 6 
20 0.59 22 0.56 21 0.5 23 0.38 27 
21 0.48 35 0.54 26 0.56 18 0.49 16 
22 0.74 6 0.64 11 0.54 20 0.39 25 
23 0.61 19 0.6 17 0.56 17 0.43 21 
24 0.68 12 0.58 19 0.48 28 0.34 34 
25 0.79 4 0.72 6 0.62 13 0.46 18 
26 1 1 0.91 2 0.78 6 0.58 11 
27 0.59 21 0.71 7 0.8 4 0.76 4 
28 0.46 39 0.5 37 0.5 22 0.43 20 
29 0.68 11 0.75 5 0.75 7 0.64 7 
30 0.61 18 0.53 30 0.44 36 0.32 38 
31 0.65 14 0.66 9 0.62 12 0.49 15 
32 0.53 29 0.5 36 0.45 33 0.34 33 
33 0.68 10 0.85 3 1 1 1 1 
34 0.51 32 0.6 16 0.65 10 0.58 10 
35 0.48 34 0.49 38 0.46 31 0.36 29 
36 0.69 9 0.62 14 0.53 21 0.39 24 
37 0.62 16 0.54 25 0.46 30 0.34 32 
38 0.52 30 0.52 33 0.48 27 0.38 26 
39 0.56 25 0.5 35 0.43 38 0.32 37 
40 0.61 17 0.6 15 0.55 19 0.43 19 
41 0.64 15 0.57 20 0.48 26 0.35 31 
42 0.51 31 0.52 32 0.49 24 0.39 23 
43 0.67 13 0.55 22 0.45 32 0.31 41 
44 0.47 38 0.46 41 0.42 40 0.33 36 
45 0.53 28 0.5 34 0.44 35 0.33 35 

Mean 0.57  0.57  0.55  0.45  
Admis. wtd  0.59  0.58  0.54  0.43  

Cost wtd 0.57  0.56  0.51  0.40  
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Table 3: Technical, allocative and economic efficiency 

Hospital TE AE EE 
  (k=$25000) (k=$25000) 
1 0.74 0.55 0.41 
2 0.41 0.98 0.40
3 0.61 1.00 0.61 
4 0.47 0.91 0.43 
5 0.70 0.57 0.40
6 0.62 1.00 0.62 
7 0.87 0.54 0.47 
8 0.65 0.98 0.64
9 0.58 0.98 0.57 

10 0.80 1.00 0.80 
11 0.80 0.89 0.71
12 0.44 0.86 0.38 
13 0.59 0.66 0.39 
14 0.93 0.47 0.44 
15 0.67 0.99 0.66 
16 0.59 0.83 0.49 
17 1.00 0.99 0.99 
18 0.51 0.88 0.45
19 0.85 0.95 0.81 
20 0.60 0.83 0.50 
21 0.57 0.98 0.56
22 0.74 0.73 0.54 
23 0.63 0.89 0.56 
24 0.68 0.71 0.48
25 0.79 0.78 0.62 
26 1.00 0.78 0.78 
27 0.80 1.00 0.80
28 0.51 0.98 0.50 
29 0.76 0.99 0.75 
30 0.61 0.72 0.44 
31 0.68 0.91 0.62 
32 0.54 0.83 0.45 
33 1.00 1.00 1.00 
34 0.65 1.00 0.65
35 0.51 0.90 0.46 
36 0.69 0.77 0.53 
37 0.62 0.74 0.46
38 0.54 0.89 0.48 
39 0.56 0.77 0.43 
40 0.63 0.87 0.55
41 0.64 0.75 0.48 
42 0.54 0.91 0.49 
43 0.67 0.67 0.45
44 0.49 0.86 0.42 
45 0.54 0.81 0.44 

Mean 0.66 0.85 0.55 
Admis. wtd 0.64 0.84 0.54 

Cost wtd 0.63 0.82 0.51
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Table 4:  Comparing TE, EE and average cost effectiveness 

Hospital TE rank EE rank Average rank 
   (k=$25000)  C/E  
1 0.74 12 0.41 41 0.53 21 
2 0.41 45 0.4 43 0.35 42 
3 0.61 27 0.61 15 0.49 28 
4 0.47 43 0.43 39 0.32 44 
5 0.70 14 0.40 42 0.50 26 
6 0.62 25 0.62 14 0.48 31 
7 0.87 5 0.47 29 0.67 7 
8 0.65 20 0.64 11 0.61 12 
9 0.58 32 0.57 16 0.50 26 
10 0.80 7 0.80 5 0.61 12 
11 0.80 7 0.71 8 0.54 19 
12 0.44 44 0.38 45 0.35 42 
13 0.59 30 0.39 44 0.43 40 
14 0.93 4 0.44 37 0.31 45 
15 0.67 18 0.66 9 0.58 14 
16 0.59 30 0.49 25 0.52 24 
17 1.00 1 0.99 2 1.00 1 
18 0.51 39 0.45 34 0.44 38 
19 0.85 6 0.81 3 0.83 3 
20 0.60 29 0.50 23 0.53 21 
21 0.57 33 0.56 18 0.49 28 
22 0.74 12 0.54 20 0.65 8 
23 0.63 23 0.56 17 0.57 15 
24 0.68 16 0.48 28 0.56 17 
25 0.79 10 0.62 13 0.74 5 
26 1.00 1 0.78 6 0.98 2 
27 0.80 7 0.80 4 0.65 8 
28 0.51 39 0.50 22 0.45 36 
29 0.76 11 0.75 7 0.71 6 
30 0.61 27 0.44 36 0.49 28 
31 0.68 16 0.62 12 0.64 10 
32 0.54 35 0.45 33 0.46 34 
33 1.00 1 1.00 1 0.78 4 
34 0.65 20 0.65 10 0.55 18 
35 0.51 39 0.46 31 0.44 38 
36 0.69 15 0.53 21 0.62 11 
37 0.62 25 0.46 30 0.51 25 
38 0.54 35 0.48 27 0.47 32 
39 0.56 34 0.43 38 0.46 34 
40 0.63 23 0.55 19 0.57 15 
41 0.64 22 0.48 26 0.54 19 
42 0.54 35 0.49 24 0.47 32 
43 0.67 18 0.45 32 0.53 21 
44 0.49 42 0.42 40 0.41 41 
45 0.54 35 0.44 35 0.45 36 

Mean 0.66  0.56  0.55  
Admis. wtd 0.64  0.54 0.54  

Cost wtd 0.63  0.51 0.52  
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Table 5:  Shadow prices 

Hospital Cost per 
admission 

Mortality rate Peers Shadow price 

1 4,830 40.00% 26 $0 
2 9,224 25.00% 26, 17 $3,523 
3 8,056 7.69% 17, 33 $24,356 
4 12,409 7.14%  33 >$24356 
5 5,123 40.00% 26  $0 
6 8,249 6.25% 17,33 $24,356 
7 4,138 35.00% 26 $0 
8 6,000 14.29% 17, 33 $24,356 
9 7,382 13.04% 17, 33 $24,356 
10 6,649 4.17% 33 >$24,356 
11 7,545 4.17% 33 >$24,356 
12 8,301 32.00% 26, 17 $3,523 
13 6,052 38.46% 26 $0 
14 13,128 3.57% 33 >$24,356 
15 6,616 10.34% 17, 33 $24,356 
16 6,199 25.00% 26, 17 $3,523 
17 3,858 9.38% None $3523 to $24356 
18 7,411 24.24% 26, 17 $3,523 
19 4,520 12.12% 26, 17 $3,523 
20 6,134 24.32% 26, 17 $3,523 
21 7,484 13.51% 17, 33 $24,356 
22 4,878 25.64% 26 $0 
23 5,890 20.51% 26, 17 $3,523 
24 5,296 30.00% 26 $0 
25 4,543 21.28% 26, 17 $3,523 
26 3,590 16.98% None $0 to $3,523 
27 6,132 5.97% 17, 33 $24,356 
28 7,744 17.65% 17, 33 $24,356 
29 5,302 11.27% 17, 33 $24,356 
30 5,920 32.00% 26 $0 
31 5,518 17.33% 26, 17 $3,523 
32 6,779 27.38% 26, 17 $3,523 
33 5,283 3.33% None  $24,356 or more  
34 6,977 9.89% 17, 33 $24,356 
35 7,407 23.76% 26, 17 $3,523 
36 5,189 25.00% 26 $0 
37 5,820 29.82% 26 $0 
38 6,887 23.28% 26, 17 $3,523 
39 6,424 31.01% 26 $0 
40 5,921 20.59% 26, 17 $3,523 
41 5,618 28.57% 26 $0 
42 7,057 21.28% 26, 17 $3,523 
43 5,324 33.55% 26 $0 
44 7,605 27.37% 26, 17 $3,523 
45 6,797 28.26% 26, 17 $3,523 

Industry* 6,134 21.28% 26, 17 $3,523 
* The Industry figures are medians. 
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