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Executive Summary

This report was prepared to provide an economic analysis of current water reform for

the Wentworth Group of Concerned Scientists. The key findings include:
Reductions in agricultural income in the past decade are directly attributable to
the current drought and not market-based water recovery;
Planned (~1,500 GL) water recovery in the Water for the Future package is
predicted to have only a minimal impact net economic returns in agriculture
(less than 10% decline based on 2000-2001 agricultural surface water diversions)
and employment in the Basin, but will have a relatively larger economic impact
in particular catchments and locations;
The on-farm losses from reduced water diversions from the voluntary sale of
water entitlements are fully compensated by the proceeds of such sales. The net
effect on the regional community of sales is dependent on how the proceeds are
reinvested (on or off-farm and whether in the region or not);
The direct on-farm losses from market-based water recovery of equivalent
volumes of water are greater the smaller are the average net inflows. This
finding, in turn, provides support for timely and effective water buybacks in the
presence of climate change;
Current Australian government budget allocations ($3.1 billion for the entire
Basin) for planned water buybacks (~1,500 GL for the MDB or about 20% of
2005-2006 agricultural surface water diversions) is a little more than (using a
5% discount rate) to the estimated direct losses of reduced water diversions
given unrestricted water trading and optimal targeting in terms of where the
water is purchased,
To acquire extra volumes of water from buybacks alone consistent with ~1,500
GL of environmental flows in MDB (20% buyback with 2005-2006 agricultural
surface water diversions) will require extra funding of between $0.54 billion and
$1.4 billion in addition to the $3.1 billion allocated under the Water for the
Future package
To acquire extra volumes of water consistent with Wentworth minimum
environmental flows (~2,148 GL in the Murray-Darling Basin), and from water
buybacks alone, will require extra funding of between $2.0 billion and $3.3
billion in addition to the $3.1 billion allocated under the Water for the Future
package;
To acquire extra volumes of water for the environment a 50% buyback (based
on 2005-2006 agricultural surface water diversions), would require additional
funding of between $6.05 and $8.64 billion over and above the $3.1 billion
allocated under the Water for the Future package. To acquire volumes
consistent with a 40% buyback (based on 2005-2006 agricultural surface water
diversions), it would require additional funding of between $4.21 and $6.23
billion over and above the funds currently allocated for buyback;
Market-based water recovery is marginally more cost effective when purchases
are targeted to locations with lower value-added irrigated agriculture, primarily
in the upper and south-eastern catchments of the Basin;
Market-based water recovery for the environment is a much more cost-effective
method of acquiring water for the environment than providing subsidies for on-
farm water efficiency;



The economic costs of climate change on irrigation agriculture are substantially
reduced if there are no restrictions on water trading; and

Restrictions on water trading that are not implemented for environmental
reasons substantially increase the costs of adapting to climate change and
adapting to market-based water recovery.



Economics of Drought, Water Diversions, Water Recovery
and Climate Change in the Murray-Darling Basin

1. Introduction

The Murray-Darling Basin (MDB) is suffering its worst ever recorded drought that is
having a devastating impact on communities, agriculture and the environment. The
current water crisis has led to important water reforms over the past decade including:
the 2004 National Water Initiative, the Water Act 2007 and the 2008 Water for the
Future package. Full integration of these worthy initiatives, with particular attention
to: (1) society and communities; (2) the economics of water reform; and (3) the long-
term sustainability of the environment offers the promise of a viable future for those
who work and enjoy the benefits of living in the MDB.

The current drought has reduced seasonal allocations of water that has created an
understandable angst among farmers and their communities about any further
reductions in water diversions planned under the Water for the Future package.
Existing research, however, suggests that both past and planned water recovery will
only have a minimal impact on the overall value-added of agriculture in the Basin
provided that water trading is unrestricted. Although the effects of planned water
buybacks are small Basin-wide, compared to the impacts of the current drought and
future climate change, the impact will be much larger in some regions than in others.
By promoting economic efficiency and sustainable extractions, while also assisting
affected farmers and communities to autonomously and flexibly adapt to lower water
availability, current water reforms can help ensure a sustainable future for the Basin.

Using the existing literature and some additional modelling, an economic assessment
of the Basin is provided in terms of the:

(1) Effects of the current drought and water trading;

(2) Water diversions;

(3) Economic effects of water buybacks;

(4) Economic effects of water buybacks versus investments in on-farm irrigation
efficiency; and

(5) Economic effects of climate change.

2. Effects of the current drought and water trading

Since 2001 the Basin has suffered a sustained drought. For the period 2002-2007
average annual net inflows in the Murray River totalled 3,986 GL — the lowest
recorded for a five year period. This is much less than in any other recorded drought.
For instance, net inflows averaged 5,501 GL over the period 1940-45 and 5,707 GL
over the period 1897-1902 during the Federation Drought (see Figurel). As a result,
water diversions have declined since the start of the current drought (see Figure 2).

The impact of low inflows is illustrated by recorded outflows at the barrages at the
mouth of the River Murray over the past 40 years. There have been no recorded flows
at the Murray Mouth since November 2006 and positive flows have been recorded in
only 19 of the past 90 months (see Figure 3). At the end of July 2009 active water



storages in the Southern MDB were about 26% of their long-term average for July,
and 17% of total storage capacity (Murray-Darling Basin Authority 2009, p. 1).

Horridge et al. (2005) developed a ‘bottom-up’ Computable General Equilibrium
(CGE) model (TERM) of Australia and used it to analyse the economic impacts of the
2002-2003 drought on Australian Gross Domestic Product (GDP). They found that
the drought directly reduced GDP by 1%, and a further 0.6% indirectly via negative
multiplier effects (Horridge et al. 2005, p. 300). The relatively small impact on the
overall economy is because agriculture accounts for only 3.6% of Australian GDP. By
contrast, the drought had a large and negative impact on agricultural output that fell
by about 30% nationally. Some regions, however, suffered even larger losses with a
fall in agricultural production in New South Wales of about 45% due to the 2002-
2003 drought.

The importance of water trading in helping to maintain incomes during droughts is
shown by Peterson et al. (2004; 2005) who find that the benefits of water trading
compared to no trading are much greater in drier years. For instance, they calculate
that the increase in the Gross Regional Product (GRP) of the Southern MDB from
water trading is about 550 million dollars in a dry year with both interregional and
intraregional trade while in a wet year the gains from water trading are about $200
million (Peterson et al. 2004, p. 43). The additional gains, however, from allowing
interregional trade (including across states) versus only intraregional trade are less,
but are still substantial. Qureshi et al. (2009) estimate the gains from allowing
interregional trade compared to only intraregional trade at some $88 million/year.

3. Water diversions

The impact of the drought on the environment has been exacerbated because
environmental flows have been reduced by proportionally more than water diversions
(Connell and Grafton 2008, p. 76), as illustrated in Figure 4. This is also shown in
Table 1 that gives the decadal annual average ratio of water diversions to net inflows
along the Murray River since the 1930s. In the 1980s and 1990s water diversions
accounted for a little less than half of net inflows, but since 2000 water diversions
account for over three quarters of net inflows.

If water diversions exceed 80% of net inflows then this is viewed as insufficient to
even maintain ecosystems in a ‘fair’ or ‘moderate modified’ condition (International
Water Management Institute 2005). The annual average quantity water not used for
water diversions since 2000 on the Murray River is about 1,100 GL/year which is
essentially the water required to convey or to transport seasonal allocations used by
irrigators downstream of storages and to meet supply obligations for South Australia.
In other words, after accounting for the water required to ensure the delivery of
seasonal allocations (delivery water), and also to meet needs in South Australia
(conveyance water) that includes a minimum flow requirement to maintain water
quality levels at Murray Bridge (~ 350 GL), there is no water left in the Murray River
specifically for environmental purposes.

Figure 5 shows diversions and net inflows for the Murray River since 1930, and
Figure 6 illustrates diversions by each state and in total along with net inflows since
1994. The increased proportion of water allocated to irrigation during the drought is a



direct result of giving priority in dry years to water diversions relative to
environmental flows. As a result, the National Water Commission (NWC) in its 2009
Second Biennial Assessment of Progress in Implementation of the National Water
Initiative, observes that it is “...increasingly concerned about the security of
environmental water access entitlements and rules-based environmental water,
particularly during drought. The Commission considers that water plans should
clearly and transparently specify desired environmental outcomes and fully define
environmental watering protocols to achieve them under all inflow scenarios
(including sequences of dry years).” (NWC 2009, p. viii).

4. Economic effects of water buybacks

The effects of water buybacks can be estimated using models of the hydrology and
economics of agriculture of the Basin. Models differ in terms of their specification,
parameter values, method of solution and spatial dimensions. In all cases, the
comparison is to a ‘business-as-usual’ scenario without a water buyback. Business as
usual presumes that agricultural production and current water diversions are
sustainable in the absence of increased environmental flows. In other words, the
models implicitly assume that current agricultural practices with existing levels of
diversions can be maintained indefinitely.

Overview of the existing models and results

Peterson et al. (2004) used the TERM-WATER model to analyse the impacts of water
trading in the southern MDB. A key finding of their work is that water trading
substantially reduces the impact of reductions in irrigation water availability. They
found that using 1996/97 water availability, a 30% water buyback would reduce gross
regional product (GRP) in the southern MDB by about 2%, and Australian GDP by
0.024%.

Dixon et al. (2009) used the TERM-H20 model to analyse the economic impacts of a
water buyback (1,500 GL) in the southern MDB. They calculated that the impact of
such a buyback on the southern MDB economy is small, and predict it would reduce
real GRP by less than 1%. This is a fraction of the negative impact that would arise
from even a moderate drought and the associated reductions in seasonal water
allocations. The reason why water buybacks have a much smaller impact than
equivalent declines in diversions due to drought is because farmers are:

(1) Directly compensated for the loss of water;

(2) Reduced diversions with a buyback are accounted for in the planning and planting
decisions of affected farmers; and

(3) Less profitable irrigation activities are reduced by a much greater proportion with
a buyback than with an equivalent reduction in water use in a drought.

Based on the historical inflows of the Murray River for 1980 to 1999, Mainuddin et al.
(2007) developed a model to assess the effects on irrigated agriculture from increased
environmental water allocations (250, 350, ..., 1,500 GL/year). These environmental
allocations of water in GL are not the same as GL of water entitlements because water
entitlements have different levels of reliability. The amount of water allocated to an
entitlement in a given irrigation season depends on the water entitlement’s level of



reliability (such as ‘High Security’ or ‘General Security’ entitlements that determine
the preferential access to the consumptive pool), the overall Cap for the Basin,
diversion limits by catchment, expected inflows and water storage levels.

The integrated hydrologic-economic model of Mainuddin et al. (2007, p. 128) was
calibrated to 2000-2001 conditions in the Southern MDB with agricultural surface
water use of 8,317 GL versus the reported figure of 8,319 GL (Murray-Darling Basin
Commission 2002). Mainuddin et al. (2007) found that economic activity after the
water buy back following a 1,500 GL buyback, at least in the short run, is virtually
unchanged and note “Notwithstanding the large impact on irrigated areas and crops,
the overall economic profit remains almost unchanged from the base case...”
(Mainuddin et al. 2007, p. 130).

A summary of the key results by crops in the TERM-H20 and Mainuddin et al. (2007)
models is provided in Table 2 and their regional impacts by model and catchment is
provided in Table 3. Their predicted results from a 1,500 GL buyback of water
include:

(1) To minimise the opportunity cost of water purchases for the environment, most of
the water should be acquired from the Murray-Riverina and also the
Murrumbidgee catchments. These two regions alone provide 75% of the water
acquired for the environment. Although the Ovens catchment and the Upper
Murray provide much smaller quantities of water in absolute terms, their
proportional decline in water use is the largest in the basin, or approximately 75%
of their catchment water use;

(2) Water buybacks would have the greatest change in production in terms of irrigated
cereal and also rice crops. However, the biggest reduction in water use occurs in
terms of irrigated pasture used in livestock farming; and

(3) The loss in GRP in the regions from a water buyback will likely be the greatest in
the Murray (Upper Murray and Riverina) and Murrumbidgee catchments although
the estimated decline in the Basin as a whole is small, or about 2%.

These results only address the question of where acquiring water in the southern
MDB imposes the lowest opportunity cost on irrigated agriculture. An equally
important issue is the environmental benefits associated with acquiring water from
different catchments within the southern MDB, and what this might imply in terms of
optimal environmental watering.

Targeted buybacks and water trading

Qureshi et al. (2007) examine the economic effects of water buybacks in the southern
MDB. Their key finding is that a proportional (equal share) buyback of water for the
environment is not as cost effective as a targeted buyback from catchments where
water has lower value in use. This supports a similar finding by Mainuddin et al.
(2007). Qureshi et al. (2007) find that net revenues are $2 million/year higher with a
targeted buyback and unrestricted interregional (across catchment) water trading than
with a pro rata water buyback and unrestricted interregional trade. Net revenues
would be $117 million/year higher with a targeted buyback and unrestricted
interregional trade compared to a pro rata water recovery and no interregional water



trade. Thus, targeting water buybacks to particular locations where the value added in
agriculture is relatively low, and especially the freeing up of water trade, reduce the
costs associated with water buybacks.

Wentworth minimum flow and 2/3 rule water buybacks

We develop our own hydro-economic model of the Murray-Darling Basin based on
the catchments boundaries used by CSIRO in the development of its sustainable
yields of the Basin. Based on previous hydrological studies in the MDB and static
data from various sources, an integrated irrigated agriculture water model (ITAWM) is
built up to simulate the river flow and agricultural production in the MDB (Jiang
2010). In the hydrological component, the IAWM includes water delivery loss rates
between regions, water availability predications and climate change scenarios from
the CSIRO sustainable yields project (CSIRO 2008). In the economic component, the
ITAWM uses data from the Australian Bureau of Statistics and Bryan and Marvanek
(2004). The value of the model is that it provides a quantitative assessment of the
opportunity costs in terms of irrigated agriculture from reduced water diversions
associated with market-based water recovery by catchment and across the Basin as a
whole. The model assesses short-run effects of reduced water diversion at two points
in time — 2000-2001 which was a ‘normal’ year in terms of inflows and 2005-2006
which was a ‘dry’ year in terms of inflows. Thus, it provides a useful comparison as
to the opportunity costs at different levels of inflows and prices and costs.

One of the buyback alternatives evaluated by the model is a “Wentworth Minimum
Flow’ that represents the minimum environmental flows needed to satisfy existing
water sharing rules (rules-based water) in the Basin as modelled by Marsh et al. (2009)
that approximately equals 2,148 GL/year. The other buyback alternatives are defined
as proportion of the agricultural surface water available for diversions in the MDB
rather than as fixed quantities of water and include 10, 20, 30, 40 and 50% buybacks
of this available water. A 20% buyback (1,544 GL) approximates a 1,500 GL flows
given 2005-2006 agricultural surface water. A 40% buyback approximates a ‘2/3 rule’
that would, on average, ensure that at the mouth of Murray River would receive 2/3 of
its natural flow. A 50% buyback approximates a ‘2/3 rule’ for the MDB and tries to
mimic the flows at the end of each river valley equivalent to about 2/3 of the natural
flows.

The results, in terms of the change in water use by catchment, are summarised in
Tables 4 and 5 for a ‘normal’ year of inflows in 2000-2001 (agricultural surface water
diversions is 10,147 GL/year) and a ‘dry’ year of inflows in 2005-2006 (agricultural
surface water diversions is 7,720 GL). Care should be taken when comparing these
inflows to other sources of data in different periods and across catchments where the
hydrological boundaries may be defined differently.

Using 2000-2001 data that has the highest average agricultural surface water
diversions, Table 4 shows that a 40% buyback of average water diversions that
approximates the ‘2/3’ rule for the Murray River would be equivalent to about 4,059
GL of actual water recovered and a 50% buyback would be equivalent to about
5,073.7 GL, and would approximate a ‘2/3’ rule for each valley in the MDB. About
half of the acquired water with a 40% or 50% buyback would come from the
Murrumbidgee and Murray regions. However, substantial quantities would also be



acquired from the Loddon—Avoca and Campaspe catchments. If the base flows were
lower, as they were in 2005-2006 (see Table 5), a 40% buyback would generate about
3,088 GL or an amount slightly more than the Wentworth Minimum Flow while a
50% buyback would generate about 3,860 GL.

Under the 2000-2001 agricultural surface water diversions scenario, a Wentworth
Minimum Flow buyback would generate additional environmental flows that would
be equivalent to about 20% of actual surface water diversions for agriculture. Under
the 2005-2006 agricultural surface water diversions scenario, a Wentworth Minimum
Flow buyback would generate additional environmental flows equivalent to 28% of
actual surface water diversions for agriculture.

Using agricultural surface water diversions over the two periods (2000-2001 and
2005-2006) Tables 6 and 7 present the effect on annual net returns in agriculture in
the MDB. Using the 2000-2001 agricultural surface water diversions, Table 6
indicates that with an optimal allocation of water across all water, uses a 40%
buyback (equivalent to about 4,059 GL) lowers the annual net returns in agriculture
by about $254 million which is a 16% reduction in annual net returns relative to the
base case of no water buyback. A 50% buyback (equivalent to about 5,073 GL)
lowers the annual returns by $367 million which is about a one quarter reduction in
annual net returns relative to the base case of no water buyback. By contrast, with an
optimal allocation of water across all water uses, the Wentworth Minimum Flow
(equivalent to 2,148 GL) lowers annual net returns by about $149 million and would
reduce overall annual net returns in the Basin by less than 10%.

If agricultural surface water diversions are substantially less, as they were in 2005-
2006 (Australian Bureau of Statistics 2008, p. 65-67), then the reduction in annual net
returns from water buybacks increases because the marginal value of water is greater
for farmers. Thus, Table 7 shows that a 40% buyback lowers the annual net returns in
agriculture by about some $300 million which is equivalent to about a 20% reduction
in annual net returns relative to the base case of no water buyback. A 50% buyback
lowers the annual net returns in agriculture by $386 million which is equivalent to
about a 26% reduction in annual net returns relative to the base case of no water
buyback. A Wentworth Minimum Flow would reduce annual net economic returns by
about $292 million, or about 20% reduction in the base case net economic returns.

The proportional change from water buybacks, however, varies considerably across
the Basin with some regions barely affected (such as Condamine-Warrego) using
2000-2001 agricultural surface water diversions, even with substantial reduction in
water diversions. By contrast, other catchments suffer relatively larger reductions in
net returns (such as Murrumbidgee, Murray region, Loddon—Avoca and Campaspe
regions). Any increased net returns from floodplains agriculture associated with
increased environmental flows are not accounted for in these calculations.

Indirect and employment effects of water buybacks
The economic effects of a water buyback include:

(1) Direct impacts on-farm incomes fully compensated from the proceeds associated
with the voluntary sale of water entitlements by farmers; and



(2) Possible indirect impacts to upstream and downstream industries and the regional
economy.

The indirect impacts can be measured by negative multiplier effects associated with a
contraction in the value-added of agriculture that reduces expenditures in the
economy. Horridge et al. (2005) have used the TERM model to predict that the 2002-
2003 drought caused a 1% reduction in national GDP that, in turn, caused a further
0.6% reduction (negative multiplier of 0.6) in GDP due to negative multiplier effects
(Horridge et al., p. 300, 2005). The Australian Bureau of Statistics (ABS) has also
calculated multipliers in its input-output models to account for changes in agricultural
output. The ABS calculates that a supply shock in agriculture would generate a simple
multiplier of 0.793 from production-induced effects in all other sectors or industries
(ABS 2001, p. 81). Consumption-induced multipliers should not be included when
assessing the effect of a water buyback because the negative consumption effects of
the direct losses of the net returns in agriculture are very likely to be offset by any
increases in consumption associated with the proceeds from the sale of water
entitlements. This view is supported by Dixon et al. (2009, p. 25) who find, using the
TERM model, that even if all proceeds from a 1,500 GL buyback leaked from the
regions where the entitlements were held there would still only be a very small impact
on regional aggregate consumption.

The negative multipliers associated with reduced agricultural net returns from lower
water diversions must be offset by positive multipliers associated with the
investments made by farmers from the proceeds of their sales of water entitlements.
Unfortunately, it is not possible to calculate the size of this offsetting effect without
knowing how the proceeds are invested from water buybacks. A 2008 survey of 20
sellers of water entitlements to the Commonwealth government for environmental
purposes, however, suggests that these positive offsetting effects are likely to be
substantial. For instance, it found that 11 farmers used the funds to retire debt, six
reinvested on their farms, five used the proceeds to stay farming but to reinvest off
farm, and three used the proceeds to stop farming and reinvest off farm (Hyder
Consulting and Access Economics, 2008, p. 39).

An upper-end estimate of the direct employment losses from a Wentworth Minimum
Flow buyback (2,148 GL) and 40% (about 4,059 GL) water buyback assuming 2000-
2001 agricultural surface water diversions is about 6,309 and 11,861 workers,
respectively. These estimates are based on the assumption that one full-time worker is
employed per 55.6 ha of irrigated land. Some workers from irrigated agriculture
would, however, be re-employed in dry-land agriculture and other agricultural
activities, but many would also need to find employment in other sectors and possibly
in other locations.

Present value economic effects of water buybacks

The present value of the reductions in annual net returns from water buybacks are
presented in Tables 8 and 9 for the two surface water diversions periods (2000-2001
and 2005-2006). Different present values are calculated depending on the chosen
discount rate (3%, 5% or 10%) over a 50-year time horizon. The higher the discount
rate, the lower are the present value losses because a dollar loss in the future is worth
less the more the future is discounted. The direct losses in present value terms are



calculated as the sum of the discounted direct annual losses over a 50 year period
where these losses are obtained from the model results in Tables 6 and 7 for the
corresponding average net inflow periods.

Using the 0.793 multiplier from ABS, a ‘high-end’ estimate of the indirect impact on
the regional (and national) economy in present value terms of reduced water
diversions due to water buybacks can be calculated. These are defined as ‘Indirect
Losses’ and are determined by multiplying the direct on-farm losses by the ABS
multiplier (0.793). The direct (but not indirect) losses would be fully compensated if
the reduced water diversions arise from a voluntary water buyback. The sum of direct
and indirect losses /ess the proceeds paid to sellers of water entitlements with water
buybacks is the maximum expected loss to the regional economy from reduced water
diversions. The actual regional impact from water buybacks would be less than the
maximum expected loss due to:

(1) Leakage of expenditures to the rest of the economy from irrigation agriculture that
would lower the size of the negative multiplier;

(2) Expenditures and investments in the regional economy from the proceeds of the
sale of water entitlements that would provide a positive and offsetting multiplier in
others sectors; and

(3) Agricultural economic net returns in the base case (no water buyback) scenario are
unlikely to be sustainable due to the loss of ecosystem services because of the very
high ratio of water diversions to net inflows (76% in the Murray River) since 2000.

Table 8 indicates that using a discount rate of 5%, a Wentworth Minimum Flow
buyback (equivalent to 2,148 GL reduction in diversions), and assuming agricultural
surface water diversions over the 2000-2001 period, the maximum direct losses in
present value terms from reduced water diversions is a little less than $3 billion. This
loss is similar to the $3.1 billion allocated to reduce water over allocation in the Basin
under the Water for the Future package. Maximum total losses would be higher if
there were negative multiplier effects and would be about $4.9 billion. If there were a
buyback equal to 40% of agricultural surface water diversions the direct losses would
be $4.7 billion and total (direct and indirect) losses would be $8.3 billion with a 5%
discount rate. A 50% buyback would result in direct losses of $6.7 billion with a 5%
discount rate.

The losses are substantially higher for a fixed volume of water acquired if agricultural
surface water diversions in the MDB were at their 2005-2006 levels. For instance,
using 2005-2006 agricultural surface water diversions (see Table 9), the direct losses
with a 5% discount rate to agriculture from a Wentworth Minimum Flow buyback
would be about $5.3 billion, about $5.5 billion with a 40% buyback, and some $7
billion for a 50% buyback. The reasons for the higher loss relative to 2000-2001 is
because the less water there is available, the greater is the marginal value of water
from a given reduction in diversions.

Monte Carlo simulations
Another way to estimate the potential losses in net economic returns in agriculture

with different inflows and buybacks is to generate Monte Carlo simulations, based on
the actual probability distribution of inflows into the Murray River over the two
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periods, 1980-1999 and 2000-2008, as defined in Table 10. These probability
distributions were then calibrated in terms of probabilities for agricultural surface
water diversions in the Murray River. Using the relationship between agricultural
surface water diversions for the two periods (2000-2001 and 2005-2006) and net
economic returns (see Tables 6 and 7), and also the calibrated probability distribution,
probability density functions were derived in a Monte Carlo simulation for a
Wentworth Minimum Flow and 40% buyback. In the Monte Carlo method the annual
net economic returns from agriculture are calculated from 5,000 iterations. Table 11
presents the results of the Monte Carlo analysis in terms of the mean net economic
returns with no buyback and various buyback options calibrated to 2000-2001
agricultural surface water diversions. Table 12 presents the results calibrated to 2005-
2006 agricultural surface water diversions.

Table 11 shows that using the 1980-1999 probability of inflows calibrated to 2000-
2001 agricultural surface water diversions, a Wentworth Minimum Flow buyback
would reduce mean net economic returns by about 9%, or about $153 million/year. A
40% buyback would lower annual net returns by about 17% or $290 million. Table 12
indicates that using the 2000-2008 probability of inflows calibrated to 2005-2006
agricultural surface water diversions, a Wentworth Minimum Flow buyback and
similarly a 40% buyback would reduce mean net economic returns by 17-24%, or
between $210 and $302 million/year. These percentage declines are similar to those
calculated in Tables 6 and 7 that use a simple average and do not account for the
change in the distribution of inflows over the two periods.

Figures 7 and 8 present the probability density function and cumulative density
function of the annual net economic returns, respectively, for a Wentworth Minimum
Flow buyback and a 40% water buyback based on the probabilities of net inflows over
the period 1980-1999 calibrated to 2000-2001 agricultural surface water diversions.
Figures 9 and 10 present the same information as Figures 7 and 8, but use the
probabilities of net inflows over the period 2000-2008 calibrated to 2005-2006
agricultural surface water diversions. Using the annual net inflow probabilities for the
period 1980-1999, a 90% confidence interval for the expected annual net economic
returns with a Wentworth Minimum Flow buyback is $1.1billion to $1.94 billion,
while with a 40% buyback the confidence interval is $0.96 billion to $1.8 billion.
Using the annual net inflow probabilities for the 2000-2008 period, a 90% confidence
interval for the expected annual net economic returns with a Wentworth Minimum
Flow buyback is calculated to be between 0.71 billion and $1.44 billion. A similar
sized confidence interval was estimated for a 40% buyback.

Overall, the direct farm losses from reduced water diversions due to water buybacks
are greatest when average net inflows are smaller. This provides a justification for
timely and effective market-based water recovery if climate change, as is expected,
reduces net inflows into the Basin versus long-term average inflows. By purchasing
water entitlements for environmental purposes from willing sellers water buybacks
allow farmers and their communities to shift to lower water use, sooner rather than
later, and assist them to autonomously adapt to reductions in water availability
associated with climate change.
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Restoring the balance in the Murray-Darling Basin

The Australian government is committed to spend $3.1 billion to purchase water
entitlements from willing sellers for the environment in what is called, Restoring the
Balance in the Murray-Darling Basin. The amount the Australian government needs
to pay to achieve a desired quantity of water for environmental flows depends on the
price paid per ML of water entitlement which, in turn, depends on the reliability or
security of the purchased entitlements.

Tables 13 and 14 provide an indication of the additional expenditures required by the
Australian government under different buybacks scenarios, over and above the $900
million already spent (or contracted for), to acquire 612 GL of water entitlements by
the Australian government under the Water for the Future package, as at end of
October 2009. The two tables show the volumes of water allocated for diversions and
environmental flows under the various buyback scenarios for the MDB. The
quantities for water entitlements and environmental flows differ because water
entitlements have a reliability of less than 100% such that the amount of water
allocated to the entitlement every year is less than the nominal quantity assigned to
the entitlement. The average reliability is calculated using the long-term cap
equivalent for the water entitlements already purchased, or in the process of being
purchased by the Commonwealth government, and is approximately 64%. In general,
the higher is the reliability of the water entitlement the higher is its price.

The actual water that will be allocated to the Commonwealth environmental water
entitlements in the next year, however, will likely be much less than is implied by the
long-term cap average reliability because of current low water storages due to a
sequence of dry years in the MDB since 2001. Waterfind, a national waterbroker,
estimates that the actual water deliveries in 2009/10 based on the water entitlement
holdings by the Commonwealth as of 30 August 2009 (545 GL) would be about 32
GL (Waterfind 2009, p. 18).

Tables 13 and 14 show that, based on the average reliability (64%) and price paid per
ML ($1,522/ML) of water entitlements in 2008/09, but multiplied by the 612 GL
already contracted for by the Australian government as of 30 September 2009, a
Wentworth Minimum Flow buyback would require an additional 2,745 GL in water
entitlements at a cost of about $4 billion. To achieve this level of environmental flows,
the $3.1 billion currently allocated for water buybacks in the Water for the Future
package would have to be increased by about $2.0 billion, or alternatives found to
generate the equivalent volume of water for the environment. At a higher price of
water entitlements of $2,000/ML, the cost of acquiring about 2,745 GL in water
entitlements would need an additional $3.3 billion over and above the $3.1 billion
allocated in the Water for the Future package. These expenditures do not take into
account water entitlements held by the states for environmental purposes which, if
were used for environmental flows would reduce the quantity of entitlements needed
to be purchased by the Commonwealth.

The budget required to achieve a 2/3 natural flow, approximated by a 40% water

buyback in reference to the Murray River and 50% buyback for all river valleys in the
MDB, depends on average net inflows. A small net inflow requires less water to
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achieve the same proportional end of flow at the end of the catchment and, thus, a
smaller budget if prices are constant across the scenarios. However, the market price
of water entitlements, for at least high security entitlements, will likely be higher if
average inflows were permanently lower. In our analysis we assume that the market
price for water entitlements is the same for both scenarios although inflows were
much lower in 2005-2006 compared to 2000-2001.

Using the agricultural surface water diversions that occurred in 2000-2001, a 40%
buyback would cost an additional $9.3 billion (at $2,000/ML) and $6.5 billion (at
$1,522/ML) in excess of the amount budgeted in Restoring the Balance in the
Murray-Darling Basin under the Water for the Future Package. A 50% buyback
would cost an additional $12.4 billion (at $2,000/ML) and $8.9 billion (at $1,522/ML)
in excess of the amount budgeted in Restoring the Balance in the Murray-Darling
Basin.

5. Economic effects of water buybacks versus
investments in on-farm water-use efficiency

The Water for the Future package allocates fixed amounts of funding to water
buybacks ($3.1 billion) and investments in on and off-farm water use efficiency ($5.8
billion). To ensure cost effectiveness, the two approaches should return an equivalent
quantity of water for the same price or $/ML.

A comparison of the cost effectiveness of water buybacks and water efficiency
investments associated with the Living Murray Initiative is provided in Table 15.
Based on the market price of water entitlements and the cost of acquiring water via
efficiency investments, the Social and Economics Reference Panel for the Murray-
Darling Basin Commission concluded in April 2008, in a period of low-water
availability, that water buybacks are a cost effective method of acquiring water.

Research by Qureshi et al. (in press) in the Murrumbidgee supports the conclusion
that market-based water recovery is cost effective. In their modelling they account for
return flows from irrigation that subsequently becomes available for downstream and
aquifer users while also augmenting environmental flows. An improvement in on-
farm efficiency that reduces return flows will have an offsetting and negative impact
on environmental flows. As a result, in locations where there are lower levels of
irrigation efficiency and return flows are larger, the cost effectiveness of water
buybacks is enhanced relative to infrastructure subsidies. Qureshi et al. (in press)
further argue that a key reason for cost effectiveness of water buybacks is that, in
contrast to infrastructure subsidies, they provide farmers with flexibility as to how to
use less water. Farmers that voluntarily choose to sell their water in a buyback and
remain farming can employ deficit irrigation, change their land use and/or tillage
practices or invest in improvements in irrigation efficiency. In the subsidy approach,
water 1s acquired only through efficiency improvements whether it is the least costly
method or not. Water efficiency improvements may also have a ‘rebound’ effect in
terms of reduced return flows.
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Market-based water recovery is a more flexible approach to water recovery in a
temporal sense. This is because it allows farmers to reinvest funds from the sale of
water entitlements, and to autonomously adapt to lower water diversions in ways that
best suit them. By contrast, infrastructure subsidies ‘lock in’ current irrigation systems
and water use that reduces flexibility to adapt to climate change and climate
variability. Subsidies also economically disadvantage irrigators and irrigation districts
that, at their own expense, have already installed efficient irrigation systems.

6. Economic effects of climate change

Climate change is expected to reduce inflows into the south-eastern part of the Basin
from increased evaporation due to higher temperatures and reduced rainfall in areas
that generate the most inflows. It is also expected to increase the frequency of extreme
events.

A given proportional decline in terms of inflows will cause a larger proportional
reduction in water available for use because ‘base’ flows or conveyance water has to
be maintained to ensure delivery of water to downstream irrigators and environmental
sites. This effect is illustrated in Figure 11 for a 20% drop in inflows for a river that
previously had 100 GL inflows and needs to maintain 20 GL base, delivery or
conveyance flows assuming that previously 20 GL were allocated for environmental
water and 60 GL for water diversions. In this case, a 20% reduction in inflows results
in a 25% reduction in both water diversions and environmental water, assuming an
equi-proportional drop in use and non-use, because conveyance water is a ‘fixed cost’
of transporting water that must be maintained regardless of the level total inflows. If
the proportional reductions in environmental water were twice as much as that for
water diversions, there would be 40% reduction in environmental flows and only a
20% drop in water diversions. This issue of base, delivery or conveyance water and
environmental flows is important because of the unprecedented decline in net inflows
over the past decade, and the expectation of lower net inflows in the southern MDB
relative to long-term averages due to climate change.

Adamson et al. (2009) have assessed the effects of irrigated agriculture under
different climate scenarios and states of nature (wet with a 30% probability, normal
with 50% probability and dry with a 20% probability). They use inflow projections by
Jones et al. (2007) for 2030 and find under their global solution (optimal adaptation to
reduced water availability), the social value in the Basin declines by $200
million/year and up to $500 million/year (Adamson et al. 2009, p. 363). The losses
occur because of reduced revenues from lower yields due to deficit irrigation, a
smaller area in irrigation and because of increased costs from accessing water. In the
optimal adaptation scenario there is a proportionately greater reduction in water use in
the upstream parts of the Basin. Their results, in terms of water reductions due to
climate change, are broadly consistent with the finding that it is optimal to target
water acquisition with buybacks in the upper and south-eastern parts of the Basin.

Connor et al. (2009) use a different model to evaluate the economic impacts on
irrigated agriculture from climate change. They assess the effects of three scenarios:
(1) mild climate change with 13%, (2) moderate climate change with 38% and (3)
severe climate change with 63% reduction in inflows in the Basin. They find that
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farmers can effectively adapt to mild or moderate climate change given unrestricted
water markets. As water availability decreases, irrigators apply less water (deficit
irrigation) and fallow more land. Provided water markets are unrestricted, they find
reductions in profits are much less than the decline in inflows. For example, with
moderate climate change net returns in Victorian and South Australian agriculture
decline by 5% and 11%, respectively, with unrestricted water trading. By contrast, in
the absence of such trades the decline in net returns in Victorian and South Australian
agriculture are 19% and 54%.

Goesch et al. (2009) provide another model to assess the effects of climate change in

the Basin. They show declines in water diversions would result in a much lower

proportional decline in irrigation income as farmers are able to adapt their practices to

counter the effects of reduced water availability. Using the CSIRO (2008) medium

climate scenario projections where water surface availability falls, on average by 11%,
they predict overall diversions would fall by about 4% while irrigators’ incomes

would drop by about 1%. In this scenario, the largest proportional decline in water use

occurs with broad-acre agriculture (5.8%), grains (4.5%), dairy (4.2%) and rice (3.4%)
with an overall reduction in the area of irrigated farmland of about 1.2%. They also

find that if the water sharing plans were changed so that if environment water and

water diversions are reduced by the same proportion with climate change, irrigators’

income would decline by about 3.2%.
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Figure 1 Murray system inflows (including Darling), 1892 to 2008
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Figure 2: Murray River Water Diversions 1991-2009

6,000

O South Australia ONSW @ Victoria

5,000 -

4,000 -

w

[=}

S

]
|

Annual Diversions (GL)
8
8

-

f=}

S

S
!

T T T T T T T

ORI S U S-S NN 5 > & © & & &
,/qqqq,qp@p,&,eﬁ;yeﬁpep,\p%s
F P PSS .S
\"\@t\?r\?@@@tﬁfﬁ'v'b

July - June

Source: Murray-Darling Basin Authority




Figure 3: Flows at the Murray Mouth 1963-2009
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Figure 4: Annual Inflow, Outflow and Irrigation Use on the Murrumbidgee
River, Australia 1984-2005
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Figure 5: Murray River Net Inflows and Water Diversions 1930-2008
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Notes:

1. Net inflows are from the first column (Murray System Inflows — no Darling
River or Snowy River inflows) in the Murray River inflows table.

2. Water use is the sum of Murray River (NSW) Total Diversion, Total South
Australia Diversion in MDB and River Murray (Victoria) Gross Diversion in
the Murray River water use table.

3. Data is for the Murray River only and does not include other regions of the
southern Murray-Darling Basin.
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Figure 6: Murray River Net Inflows and Water Diversions 1994-2008
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3. Data is for the Murray River only and does not include other regions of the
southern Murray-Darling Basin.
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Figure 7: Probability (and Cumulative) Density Function for Wentworth
Minimum Flow (2,148GL) Water Buyback based on probability distribution of
1980-1999 inflows in the Murray River and calibrated to 2000-2001 agricultural
surface water diversions in the Murray-Darling Basin
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Figure 8: Probability (and Cumulative) Density Function for a 40% Water
Buyback based probability distribution of 1980-1999 inflows in the Murray
River and calibrated to 2000-2001 agricultural surface water diversions in the
Murray-Darling Basin
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Figure 9: Probability (and Cumulative) Density Function for Wentworth

Minimum Flow (2,148GL) Water Buyback based on probability distribution of
2000-2008 inflows in the Murray River and calibrated to 2005-2006 agricultural
surface water diversions in the Murray-Darling Basin
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Figure 10: Probability (and Cumulative) Density Function for a 40% Water
Buyback based on probability distribution of 2000-2008 inflows in the Murray
River and calibrated to 2005-2006 agricultural surface water diversions in the
Murray-Darling Basin
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Figure 11: Effect of Lower Inflows from an Equi-proportional Decline in Water
Diversions and Environmental Water with a Fixed Level of Conveyance
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