

High performance, low energy, wastewater management with biodiversity benefits

The Water and Carbon Group (WCG)

WCG design, implement and manage ecological projects in water and reforestation

High quality water from low cost, low emissions wastewater treatment

Carbon Credits from biodiverse planted forests

WCG major projects

Brisbane 2 Million Trees project

Australia's largest urban biodiverse reforestation project

Stormwater & wastewater treatment

Australia's best performing sewage treatment plants and stormwater treatment utilising new generation constructed wetlands (northern NSW)

Holistic approach to sewage treatment

Stage 1
Primary/secondary

Stage 3 Tertiary

Stage 4
Quaternary

UV / RO

Variable off-take to reuse and discharge

Agricultural irrigation

Environmental reuse

Environmental discharge

Sports fields irrigation

Case study 1: South Lismore STP high performance integrated system

Case study 1: Treatment performance comparison

East Lismore STP (BNR) v South Lismore STP (trickling filter and constructed wetland)

Case study 2: Performance of Byron Bay BNR and wetlands

STP/Wetlands TN comparison, 2008-09

Costs to reach modern treatment performance

Exponential cost increase for improved treatment performance

Scenario 1: Traditional BNR plant upgrade to meet future growth

- High capital and operational costs
- Accepted technology
- Reasonable performance
- High embedded operational energy requirements
- High GHG emissions
- Poor integration with local ecosystems
- No ecological restoration

Scenario 2: BNR upgrade with wetlands

- Wetland system lowers total cost
- Reduced risk to environment
- Higher treatment performance and benign environmental impact
- Wetland restoration provides additional ecosystem services
- Community engagement

Scenario 3: Integrate treatment wetlands with existing trickling filters

- Extends life of existing infrastructure
- Lowest capital and operational costs
- Zero additional energy demand
- Resource recovery and reuse
- High treatment performance
- Lower rates for community

Scenario 4: Integrated wetlands and carbon sink forest

- Carbon sequestration
- Beneficial reuse
- Forest restoration
- Remediation of ASS
- Income from carbon sink forest

NPV Results – 5ML/day system, 25yrs

Assumes carbon offset value of \$20/tCO2e NPV includes operational and capital costs over 25 yrs discounted at 5%

Summary- benefits of treatment wetlands

- Major reduction in the costs of wastewater treatment
- Enhanced system reliability
- Superior treatment performance
- Enable reuse options or environmentally benign discharge
- Energy savings
- Provides a better opportunity for the wastewater sector to engage with the community

Contact details

The Water and Carbon Group Pty Ltd

Level 12, 239 George Street, Brisbane QLD 4000

PO Box 12181, Brisbane QLD 4003

Tel: 07 3211 9997 | Fax: 07 3210 2156

Web: www.waterandcarbon.com.au

