R&D, Human Capital and Growth

Steve Dowrick Australian National University

Primary Sources of Growth in Labour Productivity

Accumulation of physical capital

- ultimately subject to diminishing returns
- hence it affects level of growth path, not its slope

Accumulation of embodied human capital

- through education / training / learning-by-doing
- limited perhaps by finite human capabilities

Accumulation of ideas (technological progress)

- through R&D
- through national spillovers
- through international spillovers

Evidence on Human Capital

Microeconomic studies of education and earning

1. Estimated impact of an additional year of school on wages

Ashenfelter and Krueger USA 9% to 16%

Miller, Mulvey and Martin Australia 4.5% to 8.3%

Lee and Miller Australia 9.2%

2. Estimated impact of attained schooling on wages

	Borland, Hirschberg and Lye	Preston
Completed high school	7.1%	13.4%
Certificate	28.5%	26.9%
Diploma	20.3%	55.9%
Degree	46.2%	89.3%

Macroeconomic Evidence on Schooling and Growth in OECD countries

Predicted increase in the level of output for an additional year of national average schooling

STUDY	
Bassanini and Scarpetta (2002)	6 %
Mankiw <i>et al.</i> (1992)	6% - 15%

Evidence on Increase in Productivity Growth Due to an Additional Year of Schooling

(through international technological spillovers for a country at 2/3 of US productivity level)

Benhabib and Spiegel (1994)	0.3 % p.a.
Frantzen (2000)	0.8 % p.a.
Dowrick & Rogers (2002)	0.2 – 0.5 % p.a.

Research and Development Industry-Level Evidence

Private and Social Marginal Rates of Return on Investment in US Manufacturing Industries, 1985

(before tax, net of depreciation)

	Investment in Physical Capital	Investment in R&D	
	Private Returns	Private Returns	Social Returns ¹
Chemical Products	20%	22%	46%
Fabricated Metal	21%	21%	21%
Non-electrical Machinery	24%	25%	40%
Electrical Products	18%	27%	31%
Transport Equipment	26%	23%	35%
Scientific Instruments	28%	28%	86%

Source: Bernstein and Nadiri (1991) Table 6

1. 'Social' returns are defined as private returns plus spillovers to the other industries covered in the study.

International Evidence

		Private Rate of Return	Social Rate of Return	Cross- country Spillover Elasticity
Lichtenberg and Siegel (1991)	i) survey of 15 previous studies of US firms and industries	25%		
	ii) 2000 US firms	30%		
Nadiri (1993)	survey of 50 US studies of firms and industries	20% to 30%	50%	
Lichtenberg and van Pottelsberghe (1996)	GDP growth across OECD countries		51-63%	
Coe & Helpman (1995)	OECD countries, pooled time-series 1971-90		85% ¹	6% ²
Frantzen (2000)	Business sector TFP growth across OECD countries		59%	
Lichtenberg and van Pottelsberghe (1998)	TFP across OECD			5% – 11%

Concluding Comments

- Investment in both education and R&D promote productivity growth
- There is evidence of significant spillover effects from education in its role as an enabler of technological diffusion
- There is also evidence of substantial national and international spillovers of R&D
- These spillover effects are not captured by standard growth accounting methods